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ABSTRACT 

The Subsurface Flow and Transport Team at the Los Alamos National Laboratory 
(LANL) has been involved in large scale projects including performance assessment of 
Yucca Mountain, Environmental Remediation of the Nevada Test Site, the LANL 
Groundwater Protection Program and geologic CO2 sequestration. Subsurface physics has 
ranged from single fluid/single phase fluid flow when simulating basin scale groundwater 
aquifers to multi-fluid/multi-phase fluid flow when simulating the movement of air and 
water (with boiling and condensing) in the unsaturated zone surrounding a potential 
nuclear waste storage facility.  These and other projects have motivated the development 
of software to assist in both scientific discovery and technical evaluation. LANL’s FEHM 
(Finite Element Heat and Mass) computer code simulates complex coupled subsurface 
processes as well flow in large and geologically complex basins. Its development has 
spanned several decades; a time over which the art and science of subsurface flow and 
transport simulation has dramatically evolved. For most early researchers, models were 
used primarily as tools for understanding subsurface processes. Subsequently, in addition 
to addressing purely scientific questions, models were used in technical evaluation roles.  
Advanced model analysis requires a detailed understanding of model errors (numerical 
dispersion and truncation) as well as those associated with the application (conceptual 
and calibration) Application errors are evaluated through exploration of model and 
parameter sensitivities and uncertainties. The development of FEHM has been motivated 
subsurface physics of applications and also by the requirements of model calibration, 
uncertainty quantification, and error analysis.  FEHM possesses unique features and 
capabilities that are of general interest to the subsurface flow and transport community 
and it is well suited to hydrology, geothermal, and petroleum reservoir applications. As 
the creator and lead developer of FEHM, I will outline the development history of 
FEHM, describe its general software structure and numerical formulations, and some of 
its unique features. These features range from novel representations of equations of state 
to features that allow accurate representation of wellbores and other sub-grid scale 
phenomena.   I will also compare the numerical method used in FEHM, the control 
volume finite element method (CVFE) with the finite element (FE) method, the finite 
difference (FD) method, and the integrated finite difference (IFD) method.  Finally I 
compare FEHM with other software of which I am familiar.   

 



 

OUTLINE 

The BACKGROUND AND HISTORICAL DEVELOPMENT section traces the 
historical development of FEHM. This essentially mirrors the evolution of the control 
volume finite element method (CVFE) method and the simulation of coupled subsurface 
physics including, most notably, heat. The NUMERICAL FORMULATION 
SUMMARY outlines the CVFE method and compares it to finite element (FE), finite 
difference (FD) and integrated finite difference (IDF) methods. SUBSURFACE 
PHYSICIS section briefly describes the physics packages available and the associated 
variables.   SOLUTION OF THE NONLINEAR EQUATIONS section describes how 
FEHM solves the nonlinear algebraic equations representing the coupled mass and 
energy balance equations. The Newton-Raphson method (with analytical derivatives), 
various pre-conditioning and degree-of-freedom reduction schemes, and the 
preconditioned Krylov space solver for linear equation, are explained. The TOOLS FOR 
QUANTITATIVE ANALYSIS section outlines the issues associated with quantifying 
errors when representing hydrostatrigraphy on numerical grids, including a discussion of 
the impacts of grid generation. This section also lists external software and interfaces 
frequently used with FEHM during model calibration and uncertainty/sensitivity 
analyses. The section titled EXPLOITING UNSTRUCTURED GRIDS discusses 
several unique FEHM features that make use of the unstructured grid connectivity to 
couple models developed with different software. It includes an account of how FEHM 
efficiently generates and solves double porosity models and how wellbores can be 
“dropped into” pre-existing numerical grids. The section titled APPLICATIONS give a 
brief overview of current applications.  The FEHM CODE STRUCTURE AND INPUT 
section outlines the basic workings of FEHM and describes features that facilitate model 
testing. Finally, the RESEARCH PRIORITIES section describes several active 
research areas being pursued in the development of FEHM and the CONCLUSION 
section draws some general conclusions. 

This article does not describe the extensive transport capabilities of FEHM that includes 
multi-species advection/dispersion, coupled reactive geochemistry, and particle tracking 
(see Viswanathan, 1996, Viswanathan et al., 1998; Hammond, 1999, and Robinson et al., 
2000 for details).  The fully coupled, thermal-hydrologic and mechanical (THM) module 
is also not described other than noting the extra stiffness matrix terms required over those 
needed for the flow and transport solution and the suitability of the CVFE method for 
these applications.  See Kelkar and Zyvoloski (1992) and Bower and Zyvoloski (1997) 
for details on this capability. 

BACKGROUND AND HISTORICAL DEVELOPMENT 

The numerical background of the FEHM computer code can be traced to the early 1970s. 
Before this time, finite element methods were almost exclusively used in solid 
mechanics, not flow problems. Applications to field problems (heat conduction) were 
being published, but nonlinear groundwater applications were rare; Neuman and 



Witherspoon (1970), Neuman (1973), and Dalen (1979) were notable exceptions. 
Neuman (1973) solved the unsaturated-saturated zone flow equations with a free water 
table using a traditional finite element code. Table 1 summarizes the historical 
development of FEHM. Zyvoloski et al. (1976) published a finite element solution to 
unsaturated zone equations with application to shallow infiltration. The formulation 
Zyvoloski et al. (1976) used was different from previous finite element formulations in 
that the equations were developed by node rather than by element. They also expanded 
the nonlinear hydraulic conductivity in low–order, finite element basis functions instead 
of the usual method of evaluating these nonlinearities at integration (quadrature) points or 
as element averages. The element stiffness coefficients were then formed analytically. 
These procedures effectively separated the fluid and geometric parts of the approximating 
algebraic equations in a manner similar to what later became know as the CVFE method. 
The details of this formulation are given by Zyvoloski (1975). The nodal construction of 
the equations also facilitated storage of neighboring nodes in modified compressed sparse 
row format (CSR) (George and Liu, 1981; Zyvoloski, 1983) where only the nonzero 
neighbors of the solution matrices are stored and the starting positions of each row are 
identified at the beginning of the connectivity array. While Zyvoloski et al. (1976) 
described the predecessor of the CVFE discretization currently used in FEHM, the 
formulation for fully coupled subsurface heat and mass transfer equations was developed 
while the author was a post-doctoral fellow at the University of Auckland, New Zealand. 
Here, motivated by the need to solve the two–phase coupled subsurface heat and fluid 
flow equations for geothermal applications, Zyvoloski et al. (1979) formulated the heat 
and mass balance equations in primitive (mass conservative) form rather than with the 
usual linearized equations (Mercer and Pinder, 1973). The equations were solved fully 
implicitly rather than using the Implicit Pressure Explicit Saturation (IMPES) formulation 
that was common at the time in petroleum industry software (Thomas, 1979). Zyvoloski 
et al. (1979) also used a FD formulation to discretize the fully coupled mass and energy 
balance equations because finite-element-based solutions to multiphase flow problems 
lack numerical stability (Mercer and Faust 1975; Faust and Mercer, 1976). Zyvoloski et 
al (1979) used Newton-Raphson (NR) iteration and introduced a method for solving the 
coupled system with an algebraic reduction in the effective degrees of freedom from two 
unknowns per node to one unknown per node to effectively “pre-condition” the linear 
system of equations, the solution of which provides the NR variable updates. The details 
are described in the section entitled SOLUTION OF THE NONLINEAR 
EQUATIONS.  After the solution of this reduced algebraic system of equations, the pre-
factored variable is recovered through back-substitution. This method of solving the fully 
coupled heat and mass balance equations in geothermal reservoirs was extended to water, 
water vapor, heat, and non-condensable CO2 gas by Zyvoloski and O’Sullivan (1980). 
The three independent variables in this application were again solved with an algebraic 
reduction of variables. These techniques, which solve the coupled heat and mass transfer 
equations, were combined with the early CVFE discretization work to form an early 
version of the current FEHM computer code. This combination of techniques was first 
described by Zyvoloski (1983). Similar to Zyvoloski et al. (1976), the finite element 
equations developed by Zyvoloski (1983) were constructed with the  row and geometric 
part of the finite element stiffness matrix separated from the fluid part and stored in 
modified CSR format. This required that the equation parameters to be defined on nodes 



rather than on elements. It was noted in the paper that using node point quadrature (also 
known as Lobatto quadrature) instead of the usual Gauss quadrature points resulted a 
diagonal capacitance matrix and the usual five point FD stencil for two-dimensional 
problems when applied to numerical grids constructed of orthogonal quadrilateral 
elements. The paper also studied the relative performance of the node point quadrature 
(equivalent to CVFE) and the Gauss quadrature (equivalent to the FE). It was concluded 
that the node point quadrature CVFE-like) option performed better than the Gauss 
quadrature (FEM) option for the nonlinear convection-dominated problems studied.  

The next breakthrough came in the iterative solution of linear equations, often known as 
the “inner” iteration when used with a NR “outer” iteration. In the early 1980s, 
pre-conditioned conjugate-gradient methods and their non-symmetric variants began to 
appear in petroleum industry software literature for multi-phase subsurface fluid flow 
applications (Behie and Vinsome, 1982). These applications were for structured FD grids 
and were not available for FE or CVFE codes. Zyvoloski (1986) developed a variably 
pre-conditioned Krylov acceleration method using ORTHOMIN acceleration with a 
modified CSR format. The pre-conditioning part of the algorithm consists of incomplete 
lower-upper (ILU) factorization, which starts with the nodal connectivity and adds 
connections during each factorization step. This was the first time that a preconditioner, 
based on incomplete factorization, was reported for an unstructured grid application.  
Instead of completing the LU process, only one or two factorization steps are performed. 
Thus the label ILU(n), where ILU stands for incomplete LU factorization, and n 
represents the number of factorization steps. With n = 1, only those operations are done 
that affect matrix positions of the original connectivity. With n = 2, addition nodal 
connections occur and for a typical FD application, the connectivity for the ILU 
preconditioner is about 50% greater  than the nodal connectivity for the FD grid stencil. 
With the structured connectivity of FD methods, additional connections for the 
factorization steps can be determined rather easily for a given node. FE and CVFE 
methods use an unstructured connectivity and a symbolic factorization must be done to 
determine the positions of additional terms that occur during the factorization steps. 
Zyvoloski (1986) obtained an order of magnitude decrease in computer runtime in 
addition to significantly less computer memory usage with this linear solver when 
compared with the direct solvers previously used in FEHM. This has been the ‘core’ 
linear equation solver in FEHM ever since. Conversations with Manteuffel (1980) helped 
guide this programming effort. The ORTHOMIN acceleration was replaced with the 
more efficient GMRES and BCGSTAB (van der Vorst, 1992) acceleration methods and 
there have also been improvements in the symbolic factorization. Addition details are 
provided in the SOLUTION OF THE NONLINEAR EQUATIONS section. 

FEHM is a large computer code comprising roughly 450 subroutines and approximately 
200,000 lines of code with development and usage guided by funding trends of our 
research group at LANL and major collaborators. Several hundred no-cost FEHM 
licenses to individuals and institutions have been distributed world wide. This paper 
summarizes FEHM in sufficient detail to inform the reader of most of FEHM’s 
capabilities. With the advent of FORTRAN 90, FEHM common bocks were replaced 



with use modules and dynamic memory allocation. Continued releases of new versions 
generally represent additional capabilities. 

 

 

NUMERICAL FORMULATION SUMMARY 

In the author’s opinion CVFE evolved from researchers need to solve nonlinear problems 
with finite elements. Besides the author’s work the reader is referred to Forsyth (1990) 
and Fung (1992) for more detail. A detailed numerical development of the CVFE method 
used in FEHM is provided by Zyvoloski (2007). In the rest of this section a numerical 
definition of the CVFE method will be provided and the method will be compared to the 
finite element method (FEM), the finite difference method (FDM), and the integrated 
finite difference method (IFDM).  Later in the paper, FEHM will be compared with 
several well known software packages. 

As noted in the background section above, the finite element method can be made 
equivalent to the finite difference method by choosing quadrature points for the 
evaluation of the stiffness matrix integral that are positioned at the nodes. The nodal 
quadrature points make the inputting of parameters at nodes, like FD methods, very 
convenient. If these procedures are applied to orthogonal  four node quadrilateral and 
hexahedral elements, the standard five point (2D) and seven point (3D) FD stencils result. 
If these procedures are applied to triangular or tetrahedral elements the result is a method 
equivalent to the IFD method (described later). The geometric terms associated with the 
CVFE method are defined in Figure 1. The internodal area divided by distance (Aij/Δdij) 
term, also called the area factor, is defined for both orthogonal (Fig. 1a) and non 
orthogonal grids (Fig. 1b). The area factors are formed by the intersection of 
perpendicular bisectors (PEBI) of the edges of the elements. This ensures that the area 
factors are perpendicular to the control volume boundary. In particular, note the area 
factor A35 for the connection between nodes 3 and 5 is zero for the orthogonal grid and 
non zero for the non orthogonal grid. The resulting connectivity for the orthogonal case is 
the standard five-point FD stencil. The CVFE, block centered FD, and IFD methods 
would be equivalent on such (orthogonal) grids. In fact, the grid generation software 
typically used for large-scale FEHM applications, the Los Alamos Grid Toolkit (LaGriT, 
2007) generates nodal volumes and area factors (Aij/Δdij) from a finite element definition 
of triangles (with unit depth) , tetrahedrals, quadrilaterals (with unit depth), and 
hexahedrals.  In this author’s opinion the only difference between IFD and CVFE 
methods is the underlying finite element grid which accompanies the CVFE method. 

Comparison with the FE method. CVFE methods have several advantages compared to 
the traditional FE method when used to simulate unsaturated groundwater flow. Consider 
the equation for the conservation of water in the unsaturated zone:     
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where θ is saturation, wρ is the water density, φ  is the porosity, t  is the time, z is 
elevation, g is the gravitational constant, wμ  is viscosity, wp  is pressure, k is intrinsic 
permeability and k ‘(θ) is relative  permeability. Equation 1 can be highly nonlinear and 
is equivalent to Richards’ Equation (Richards, 1931) with the specification of a capillary 
relationship between θ and wp . For unconditional stability, the nonlinear relative 
permeability, k‘(θ), must be upwinded in any numerical method. For FE methods, this is 
either not done or it is computationally inefficient because of the necessity to recompute 
the stiffness matrix. For the CVFE method, it is easy. Because of the nodal input of 
parameters, the separation of the geometric and the nodal nonlinear terms, and the node 
by node assembly of the numerical analog of Eq. 1, the CVFE method naturally identifies 
node pairs and can apply any internodal evaluation technique, including harmonic 
averaging or upwinding, at the control volume boundary. While FEHM users have the 
ability to chose the internodal evaluation method, they are always recommended to use 
full upwinding for nonlinear or advective terms The nodal connectivity is contained in 
compressed sparse row (CSR) format as opposed to the element connectivity array that is 
typical of FE methods.  The nodal connectivity greatly facilitates the formulation of 
nonlinear equations (requiring upwinding) in a Newton Raphson (NR) iteration rather 
than the Picard iteration commonly found in FE software. This in turn results in the 
CVFE method having greater computational efficiency than FE method.  

It should be noted here that all control volume discretization methods (FD, IFD, CVFE) 
have an advantage over typical FE methods in mass conservation.  These methods are 
locally conservative and the standard FE method is not. Mixed FE methods do conserve 
mass locally, but at a considerable cost in efficiency.  The lack of local mass conservation 
has the potential to cause significant errors in nonlinear problems with large grid changes. 

This author sees no disadvantages in the CVFE method compared to the FE method for 
highly nonlinear subsurface flow applications (e. g. Richards’ Equation).  For the solution 
of large scale confined aquifer applications, a linear problem requiring no iteration, there 
might be little difference between the two methods.  

Comparison with the FD method. It was noted previously that the CVFE method 
applied on a grid with orthogonal quadrilaterals (2D) or hexahedrals (3D) produced the 
standard five point and seven point finite difference stencils. The two methods both 
readily implement upwinding and NR iteration in the solution of nonlinear equations. The 
CFVE method has significant advantage in that it can also build control volumes from 
triangles and tetrahedrals. This allows spatially variable hydrostratigraphy and other 
internal boundaries to be represented accurately. Figures 2 and 3 give examples of CVFE 
grids with grid resolution that varies in accordance with stratigraphic constraints.  
Additional discussion will occur when quality grids are presented.   



Traditional FD methods embodied in the popular MODFLOW (Harbaugh et al., 2000) 
software package have a structured connectivity that allows the neighboring nodes to be 
identified without the use of either an element or nodal connectivity array. Efficient 
software is readily available for structured connectivity that solves the linear equations 
that result from the finite difference equations.  This gives a computational advantage in 
both speed and computer memory requirements over the FE, IFD, and CVFE methods 
that use unstructured connectivity. Zyvoloski and Vessilinov (2006) estimated that the 
penalty for unstructured connectivity was 20 -50 % extra CPU time to solve an identical 
problem. Because the FE method must recalculate the stiffness matrix at each iteration, 
this penalty is greater, for problems requiring iteration, for the FE method than the CVFE 
method which separates the nonlinear and geometric parts on the internodal flux terms. 
There is considerable extra storage required for the unstructured connectivity methods. 
This will be discusses later when FEHM is compared to the FD code MODFLOW. These 
disadvantages disappear when a fine resolution region is required in a large numerical 
grid. Here, the fine resolution will propagate to the boundary in the FD method, often 
referred to as streaking,  where as the unstructured methods have the ability to localize 
the refinement. Localization can only be achieved with a FD method through iteration, 
with additional model runs, of the solutions on the fine grid and coarse grid parts of the 
problem (Mehl and Hill, 2002). 

Comparison with the IFD method. In many applications the IFD and CVFE methods 
are identical. One of the most well known IFD based computer codes, TOUGH2 (Pruess, 
1991), needs a connectivity matrix, nodal coordinates, nodal volumes, and control 
volume face areas to be provided to the code as input data. For relatively complicated 
problems, this is accomplished by external grid generation software.  Internally, FD, IFD 
and CVFE solve the same numerical equations. For Eq. 1 this would be:  
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The summation refers to neighboring nodes, j, connected to node i. Here the ( )ij 
represents some inter-nodal averaging. The term is the volume of the gridblock 
surrounding node i. The area factor (Aij/Δdij) has been described earlier. Harmonic, 
arithmetic, and upwinded internodal evaluation can all be used with the IFD method. The 
upwinding of the two point fluxes (depending only on i and j nodes) facilitates stable and 
monotonic numerical simulation of multiphase flow.   
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 Differences between the IFD and CVFE methods are largely based on where and when 
the gridblock volume and area factors are calculated. IFD methods do not have an 
underlying FE grid.  In CVFE software (e. g. FEHM or LaGRit) the traditional FE 
element definitions and nodal coordinates are inputs and they are used to calculate both 
the nodal connectivity and the area factors. If the elements used are orthogonal (or right 
triangles and right tetrahedrals) both methods will produce identical connectivities and 
area factors. This is shown in Figure 1a. Note that the areas are constructed by the PEBI 



method described earlier and this leads naturally to zero diagonal area (i.e., A35= 0) in 
Figure 1a and the elimination of the diagonal connection. This results in the standard FD 
stencil. If the elements are non orthogonal as is shown in Figure 1b, then the CVFE 
software will automatically add connections during the course of creating the area factors 
as required to produce a quality grid (discussed later). The IFD software requires that 
nodal connectivities (not element definitions) be provided as input.  Thus, the additional 
connections required for non orthogonal grids are not easy to obtain   As a practical 
approach, IFD methods often ignore the requirement of additional terms and use a simple 
FD stencil (Haukwa et al., 2003) even on non orthogonal grids. The CVFE method 
naturally conserves computer memory by only adding additional connections where 
required by grid geometry. 

The second difference is that the stiffness matrix calculations available with the CVFE 
method as part of its FE legacy are invaluable when coupling the thermal, hydrologic, 
and mechanical behavior (THM).   In a CVFE code, the variables and equation 
parameters for both the flow and stress equations are co-located at gridblock centers and 
the non isotropic terms (e. g. the xy, xz, yz terms) needed for the stress equations are 
easily calculated. This functionality is not available in IFD software; the fully coupled 
THM simulations are difficult if not impossible in IFD software.  This functionality is 
available in FE software and coupling would be possible for mildly nonlinear problems 
with the caveats listed previously in the discussion on the comparison between the FE 
and CVFE methods.  

SUBSURFACE PHYSICIS 

FEHM contains a large suite of subsurface physics modules that are used for a variety of 
applications.  Table 2 lists the physics modules that are tested and in common use. The 
table also includes the primary variable set and selected references. The oldest module is 
the water, water vapor, and energy flow that has been used for geothermal applications. 
Of particular interest to geothermal applications is the inclusion (in the usual suite of rock 
compressibility of a nonlinear fracture opening relationship, the “Gangi model” (Gangi, 
1978) that relates the permeability and aperture of fractures to fracture roughness and 
earth stresses. This relationship made it possible to accurately model a very complicated 
geothermal reservoir that was created through hydraulic fracturing (Tenma et. al., 2007). 
The newest physics module is the non isothermal CO2-water module that is used in CO2 
sequestration studies. The module includes a novel tabular equation of state (EOS) that 
allows for efficient calculation of CO2 properties and phase transitions even in the super 
critical range.  This EOS formulation will be detailed shortly. In addition, feedback from 
the transport module (Robinson et. al, 2000) in FEHM is available in a timestep-lagged 
manner to the flow solution. For example, if the reactive transport solution in FEHM 
predicts that silica will precipitate in a fracture, then the porosity and permeability can be 
changed accordingly. Of course, any explicit update will put limitations on the time step 
size.   

While FEHM uses several different functional representations for the EOS of fluids and 
rock parameters, two that are unique to FEHM are worth mentioning. The first is the use 



of rational polynomials is the EOS for water and water vapor. Rational function 
approximations and innovative tabular equations of state facilitate the evaluation 
analytical derivatives in FEHM’s NR iteration.  Rational function approximations (ratios 
of polynomials) accurately represent water properties (less than a few tenths of percent 
error over the ranges given above) while providing derivatives, because of the 
polynomial functions, at virtually no additional CPU cost. Complete third-order 
polynomials in pressure and temperature are used in both the numerator and denominator. 
For example, the density is approximated as:  
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This type of relationship provides an accurate method for determining parameter values 
over a wide range of pressures and temperatures, as well as allowing derivatives with 
respect to pressure and temperature to be computed easily (Zyvoloski et al., 1992). 
Polynomial coefficients were obtained using a Levenberg-Marquardt-based minimization 
method with a differential correction algorithm (Blackett, 1996) to fit data from the 
National Bureau of Standards OSRD Database 10, the database used for the NBS/NRC 
Steam Tables (Harr et al., 1984). The properties of the liquid (water) and water vapor 
phases are represented over wide range of pressures (0.001 to 110 MPa) and temperatures 
(0.5 to 360oC).   

The other unique EOS uses a variably-spaced tabular lookup tables for representing the 
properties of CO2 in all phase states including “supercritical fluid”.  The details are 
described in Doherty (2006).   The method may be outlined with the aid of Figure 4 and 
Figure 5. Figure 4 depicts how a phase transition line (ie. the saturation line) is 
represented in a variably-spaced grid. This arrangement allows very fine grid spacing in 
areas where properties change rapidly, while not using massive amount of computer 
memory. In the tables of CO2 properties in FEHM, temperature increments as low as 
0.01oC are used near the critical point (7.38 Mpa, 31.1oC) and up to 1oC elsewhere. This 
allows the use of tables that have thousands to millions of points rather than billions of 
points. The data for both liquid and vapor and also stored in a single table in an intuitive 
and natural way.  Figure 5 shows a close-up of an element of the lookup table that has a 
phase transition line. There is a property discontinuity at the liquid vapor interface and 
triangular interpolation is used on each side of the phase transition line.  In a cell without 
the phase transition line, bilinear interpolation is used.  With two phase calculations, the 



temperature becomes a function of pressure and the above method smoothly represents 
this behavior because the phase transition line is an integral part of the table.  

 

SOLUTION OF THE NONLINEAR EQUATIONS 

The efficient solution of coupled nonlinear problems is critical to the simulation of large 
scale applications. FEHM uses a Newton-Raphson (NR) iteration (the “outer loop”) to 
solve the nonlinear material and energy balance equations. FEHM differs from similiar 
multi-physics computer codes (e.g. TOUGH2, see Pruess (1991), and NUFT, see 
Nitao(1998)) in that the NR derivatives are formed analytically, as opposed to 
numerically, because this generally leads to faster convergence of the  very stiff nonlinear 
system of equations that often arise when investigating widely varying parameter sets as 
might be encountered during model calibration . However, it also can lead to slower 
development of new physics modules (i.e., tracking down programming errors). A porous 
flow simulator that solves energy and mass balance equations requires the functional 
dependence of the phase densities, the phase enthalpies, and the phase viscosities on T 
and P for all fluids in a system. For the NR iteration, FEHM requires the analytic 
derivatives of these thermodynamic functions with respect to P and T.  

In the solution of the coupled heat and mass transfer equations, FEHM forms and 
evaluates all balance equations even though disparate spatial and temporal scale may 
render some of the balance equations relatively unimportant over some time periods. 
Consider the simultaneous solution of heat and mass transfer: 
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where, in addition to the parameters previously defined for equation for Eq. (1) and Eq. 
(2), u is the internal energy, h is the enthalpy, K is the thermal conductivity, and T is the 
temperature. The subscripts l and v refer, respectively, to the liquid and vapor phases and 
the subscripts  and e refers to the mass and energy balance equations respectively. The 
flow terms are evaluated at the current time step. The solution of the simultaneous set of 
equations 

m

(6) and (7) for the NR updates takes the form: 

 [ ]{ } [ ]{ } { }11 1 12 2 ,mA x A x R+ = −  (8) 

 [ ]{ } [ ]{ } { }21 1 22 2 ,eA x A x R+ = −  (9) 

where [A11] and [A12] contains the derivatives with respect to x1 and x2, respectively, for 
the mass balance equation. Here, x1 is the pressure and x2 is the energy variable, either 
temperature or saturation, depending on the phase state. All of the balance equations 
depend on both x1 and x2 and the matrices in equations (8) and (9) have off-diagonal 
terms that represent derivatives of the internodal flow terms with respect to the variables. 
We note, however, that the pressure (x1) occurs explicitly in flow terms while energy 
variable (x2) occurs implicitly in the internodal flow terms through the dependence of 
density, viscosity, and enthalpy on temperature and explicitly through the heat 
conduction term. The situation is the same if the energy variable “switches” to saturation 
in the two phase region. Because the time scale for a pressure pulse to travel is faster in 
general than that for a temperature or saturation wave, it is tempting to solve equation (6) 
and (7) sequentially. The solution is accomplished this way in several commercial FEM 
simulation packages. In FEHM, the solution is obtained using a fully coupled ILU(n)-
Krylov space solver to solve the coupled equations  (8) and (9) or with the reduced 
degree of freedom algorithm (RDOF) originally developed by Zyvoloski et al (1979) and 
subsequently improved. The algorithm neglects the off-diagonal contribution in A12 and 
A22 and thus allows a reduced one-degree-of-freedom algorithm to be formed: 

 [ ] [ ][ ] [ ] { } { } [ ][ ] { }{ }1 1
11 12 22 21 1 12 22 eRmA A A A x R A A− −⎡ ⎤− = − −⎣ ⎦ .  (10) 



The inverse operations in equation (10) is with a diagonal matrix.  The NR correction for 
temperature (or saturation) can then be obtained through back substitution. The algorithm 
has similarities to the well-known IMPES algorithm (Watts, 1986) developed for the 
petroleum industry. Unlike schemes that employ the explicit solution of some parts of the 
balance equations, the RDOF methods are fully implicit and have no timestep limitation. 
If temperature effects start to dominate in equations (8) and (9), the RDOF method 
simply uses more iterations with the attendant timestep restarts when the iterations 
exceeded some predetermined limit.  Zyvoloski (1989) showed that method could be 
improved by adding a number of successive over relaxation (SOR) steps of equations (8) 
and (9) after equation (10) was solved. Bullivant and Zyvoloski (1990) showed that the 
block normalization of equations (8) and (9) was equivalent to the matrix operations in 
equation (10). Tseng and Zyvoloski (2000) showed that RDOF operations could be done 
as part of the ILU pre-conditioner while using equations (8) and (9) for the GMRES 
acceleration. This was more robust in terms in that the RDOF method was no longer an 
approximate NR technique but became an efficient pre-conditioner. Tseng and Zyvoloski 
showed RDOF operations effectively solved multi-component heat and mass transfer 
equations and speedups of 30% or more are realized with the modern Krylov-space 
solvers. Moreover, this was accompanied with guaranteed savings of up to factor of ten 
(for three independent variables) in memory requirements.  

Numerical ill-conditioning arising from disparate time scales of the different mass and 
energy balance equations, as well as differing control volume sizes, are attenuated in 
FEHM through block normalization of the balance equations and using a stopping criteria 
based on the residuals of the normalized equations. As mentioned previously, the just-
described reduction algorithms always track the complete heat and mass transfer balance 
equations. This ensures that all linear equations are solved equitably; the nonlinear 
equations are considered solved when the maximum residual of block-normalized 
equations is smaller than a user-specified tolerance. 

 

TOOLS FOR QUANTITATIVE ANALYSIS 

The design and development of FEHM has mirrored the groundwater community’s need 
for quantitative groundwater models. By quantitative analysis, it is meant that the model 
results, for example flow rates, are quantified in terms of parameter uncertainty, grid 
effects, etc. Zyvoloski and Vesselinov (2006) showed that improper grid resolution 
changed the values of calibrated permeability by up to an order of magnitude.  The Yucca 
Mountain and environmental restoration programs at the Nevada Test Site require that the 
model errors and uncertainty be evaluated. While some errors, such as those associated 
with the conceptual model, will always be difficult to assess, others, such as those 
associated with grid block size and numerical difference method (truncation error), and 
the representation of hydrostratigraphy, are relatively straightforward to evaluate. 
Analyzing these errors in combination with model calibration, uncertainty analysis, and 
the evaluation of multiple conceptual models provides a quantitative framework for 
decision making. It must also be noted that the grid resolution and numerical 



discretization method can greatly affect our ability to represent alternate conceptual 
models that involve faults or other features requiring fine grid resolution. The sub section 
Quality grids is unique in the sense that the CVFE method in FEHM and the LaGriT 
software allow, perhaps for the first time, the combined evaluation of both structural error 
(i.e the representation of hydrostratigraphy) and truncation error (grid size). 

Quality grids. In a majority of large scale applications using FEHM, the numerical grid 
is based on a solid earth model of the hydrostratigraphy such as EarthVision (2007), 
Stratamodel (2007), or GoCad (2007). The generation of quality grids, those that satisfy 
the Voronoi criteria (Voronoi, 1908), is crucial to quantitative analysis of subsurface flow 
and transport. Gable et al. (1996) discusses many of the issues related to grid generation. 
Figure 2 and Figure 3 show two examples of grids created with LaGriT. Figure 2 
illustrates the EarthVision solid model and numerical grid for the confined aquifer system 
at the Nevada Test Site (Ruskauff et al., 2006) based on control volumes generated from 
orthogonal hexahedral elements with octree refinement near faults and other geological 
features. The orthogonal elements facilitate the use of a velocity-based interpolation 
particle tracking method (Pollock, 1989) and the octree regions employ control volumes 
generated from tetrahedral elements. Figure 3 shows a tetrahedral-based grid, generated 
by LaGriT, of an unsaturated flow system near Los Alamos (Robinson et al, 2005). The 
linear features identified with increased resolution are fine-gridded, Voronoi-correct, 
faults have many extra connections compared to FD methods to ensure positive area 
factors. Evident in both figures are distinct, sloping hydrostratigraphic layers; the ability 
to represent these sloping layers can be important for complex flow geometries. Negative 
area factors can occur for some large angles between nodes or grid blocks. Most often, 
negative area factors can be corrected by increasing the grid resolution these areas when 
additional connectivity is easily incorporated (as is the case with the CVFE method). 
Figure 6 depicts an idealized sloping hydrostratigraphy that has been mapped on a grid 
with relatively coarse resolution. The mapping with an orthogonal FD grid not only looks 
blocky, but when used in simulations, it can lead to predictions that are orders of 
magnitude in error when compared to a fine-grid simulation for models with large 
(realistic) permeability contrasts between the layering (Zyvoloski and Vessilinov, 2006). 
The source of this error consists of both the mapping error associated with the 
hydrostratigraphy and the numerical truncation error associated with the numerical 
difference method. One way to estimate the combined hydrostratigraphic mapping and 
truncation errors is to map the hydrostratigraphic model onto a sequence of coarse to fine 
resolution grids and monitor the convergence of steady-state flow rates with simple fixed 
head boundary conditions. Bower et al. (2005) found this exercise useful as a means to 
determine an adequate grid resolution in each direction for flow and contaminant 
transport. Figure 7 shows the grids they used on the left while a plot of the total 
groundwater flow though the model as a function of the number of nodes in the model 
subject to head boundary conditions applied (separately) in the coordinate directions is on 
the right. Clearly, the north-south flow stabilizes quickly at low grid resolution while the 
other flow directions require much finer grid resolution. It is evident that the direction of 
flow in a given simulation is important in designing the appropriate grid resolution. Their 
work used orthogonal hexahedral elements that produced a standard seven point FD 
stencil for their three-dimensional simulations. CVFE variable connectivity is ideally 



suited for grid generation tools that effectively represent the hydrostratigraphy with 
sloping grids. MODFLOW also allows the representation of sloping hydrostratigraphy 
while retaining the standard FD stencil. Figure 8 compares the standard five point FD 
stencil and associated control volume with the CVFE method when used with a sloping 
grid. Figure 8a shows the standard 5 point stencil when the gridblocks conform to the 
slope. The inconsistency in the control volume is evident. The CVFE method, adhering to 
Voronoi constraints, automatically adds additional connections and generates the grid 
stencil shown in Figure 8b. Here, two more connections are added to render the grid 
connections and areas consistent with the control volume. These extra connections are 
defined by precisely the process depicted in Figure 1.  The inconsistent grid stencil 
shown in Figure 8a, labeled a conforming finite difference (CFD) stencil by Zyvoloski 
and Vessilinov (2006), has a component of the numerical truncation error that is 
proportional to the slope angle as well as the more common terms that depend on grid 
size. Although the grid-size terms decrease with grid size; the slope angle error remains 
constant. The argument has been made that the grid stencil shown in Figure 8a is 
adequate for sloping grids of less than ten degrees (Haukwa et al., 2003). Zyvoloski and 
Vessilinov, (2006) confirmed this for the coarse grid shown in Figure 8 and single phase 
flow. Here the errors in mapping of the hydrostratigraphy outweighed the truncation 
error. The problems with CFD stencils of the type shown in Figure 8 can be summarized 
as follows: 

1. In a complex flow simulations with vertical and horizontal components, the relative 
magnitude of the flow components may differ by orders of magnitude yet the 
smaller component may be responsible for important phenomena like perching and 
contaminant transport. The question naturally arises: Does the error due to the 
slope angle in the CFD grid stencil overwhelm the true flow? 

2. The CFD grid stencil creates uncertainties with grid testing convergence studies 
because the truncation error does not to diminish to zero, 

3. The errors associated with the CFD grid stencil creates uncertainties in calibrated 
models when used for predicting future behavior. This exacerbates the already 
dubious (but common) practice of using flow models for predicting transport. Here, 
gross regional flow may be adequately represented with the CFD method, while the 
contaminant transport, often originating from sources separated from the regional 
flow by confining layers, may be dominated by much finer flow field detail. 

 

The errors incurred with CFD stencils when they are used with transport have also been 
reported by in Jenny et al., 2001). They performed grid tests using the five point FD 
stencil on non rectangular grids (i.e. the CFD stencil) and obtained the results shown in 
Figure 9. The results for the CFD are considerably different than the correct (flat 
interface) solution obtained with the 27 point stencil (equivalent to the CVFE stencil with 
distorted grids in 3D).  The concerns raised in Jenny et al. (2001) transfer directly to any 
problem that uses upwinded transported parameters: advective transport, unsaturated 
zone flow, combined unsaturated zone and saturated zone flow, and buoyancy driven heat 
and mass transfer. 



It should be noted also that FEHM also provides an internal FD grid generator to quickly 
scope problems and facilitate comparison to FD of CFD software. 

Model calibration and uncertainty analysis. FEHM has made extensive use of external 
calibration software in many large-scale simulations. PEST (2007) uses an enhanced 
Levenberg-Marquardt algorithm and has a number of attractive features that facilitate 
uncertainty and sensitivity analyses (Moore and Doherty, 2005). Model calibration and 
uncertainty analysis for a large model with perhaps hundreds of calibration parameters 
often takes thousands of model runs. Codes using unstructured connectivity (FE, IDF, 
and CVFE methods) have many more startup operations than structured FD codes like 
MODFLOW. As mentioned earlier, FEHM facilitates multiple runs by reading in area 
factors and symbolic factorization connectivity in binary format.  FEHM also has the 
option of being run as a subroutine from a driver program. This feature allows all of the 
startup calculations to be retained in memory and eliminates the need for input data 
(e.g., the permeability field) to be repeatedly loaded. Because of FEHM’s long 
association with the PEST and its suite of utilities, it has a module (pest) that simplifies 
communication with the PEST software. FEHM is also being used with the global 
optimization software AMALGAM (Vrugt and Robinson, 2007). This software is 
particularly useful in those applications where the parameter sensitivities are 
discontinuous or there are many local minima (Vrugt, 2007). For large scale applications, 
model runs can number in the tens of thousands for calibration and uncertainty analyses 
and they are routinely distributed to multiple processors using utilities available with 
PEST as well as several developed at LANL. 

EXPLOITING UNSTRUCTURED GRIDS 

FEHM has exploited the unstructured grid connectivity in model coupling and localized 
grid resolution, the generalized dual-porosity method, and the embedded wellbore model. 
To the author’s knowledge, the features are unique to FEHM. 

Model Coupling.  Model coupling (communication of different models through input 
and output files) was motivated by a desire to simulate entire groundwater basins. Basin-
scale groundwater flow regions include surface, vadose zone, and deeper regional 
aquifers. Distinct regions can have different temporal and spatial characteristics 
(including grid resolution requirements) not to mention different numbers of independent 
variables per gridblock. To avoid problems associated with high-aspect-ratio finite 
difference cells (i.e. streaking), Mehl and Hill (2002) developed a local grid refinement 
method that couples a high resolution “child” grid to a coarse “parent” grid using an 
iterative technique that alternately mapped hydraulic head and flux fluxes onto parent and 
child interfaces. Chen and Zyvoloski (2006) were able to reproduce such local gird 
refinement without iteration using FEHM, a spatially variable grid, and octree refinement 
similar to that shown in Figure 2. Moreover, a saturated-unsaturated flow system solution 
with model coupling was feasible through either model iteration or a combined octree-
refined model without iteration. To facilitate model coupling in FEHM a specific 
subroutine (submodel_bc.f) and input macro (subm) was created. The CVFE formulation 
makes the matching on gridblocks centers with a FD control volume code like 



MODFLOW.  Dickenson et al. (2007) developed a technique to couple FEHM and 
MODFLOW (Harbaugh et al., 2000) even when coupled grid (nodes or cell centers) were 
not coincident. In the future, model coupling, especially across different software and 
codes, may be an important aspect of large-scale computing because of the time and 
expense of data collection, conceptual model development, numerical model creation, 
and model calibration. One can easily imagine an existing basin-scale MODFLOW 
model coupled to FEHM in important areas surrounding contaminant sources. While 
MODFLOW typically has one independent variable, FEHM models may have several 
variables representing complex non isothermal vadose zone processes. Also, it should be 
noted that iterative model coupling is a necessary component in many parallelization 
schemes when models reside on different processors in a distributed computing 
environment. The Local Grid Refinement (LGR) package in MODFLOW (MODFLOW–
LGR, 2005) also describes more details on model coupling. 

 

Generalized Dual Porosity Method. While there has been considerable research in 
multiple porosity methods (Gerke and van Genuchten, 1993; Zyvoloski et al., 1992; 
Pruess and Narasimhan, 1985; and Warren and Root, 1963), none has exploited the 
computational advantages of unstructured grids and CSR storage. FEHM has a variety of 
different sub-grid scale features that include traditional dual permeability and dual 
porosity methods. They are summarized with references in Table 3. The basic idea of 
dual porosity methods is to represent subgrid-scale phenomena such as fractures or 
unconnected pore space as a part of a gridblock (Zyvoloski et al., 2007). The gridblock is 
divided as shown in Figure 10a with one primary node (mobile region) and one 
secondary node (immobile region). The dual porosity method assumes that the primary 
porosity connects globally to other primary nodes but the secondary node connects only 
to the primary node in its gridblock (the related dual permeability method allows both the 
primary and the secondary nodes to communicate globally). Because the dual porosity 
assumption is equivalent to a one-dimensional connection between the primary and 
secondary nodes, it allows the secondary nodes to be pre-factored with tridiagonal 
decomposition using the Thomas algorithm. This conceptualization of the secondary 
material communicating one dimensionally with the primary node does not limit the 
model to only a single secondary porosity, multiporosity modeling is allowable (Pruess 
and Narasimhan, 1985; Zyvoloski et al., 1992; Smith and Seth, 1999). Additional 
secondary nodes as shown in Figure 10b help represent steep gradients such as might 
occur with contaminants diffusing from a clay layer (immobile region) into a sandy 
aquifer (mobile). By using the flexibility inherent in the unstructured connectivity of 
FEHM, Zyvoloski et al. (2007) advanced the technology with the Generalized Dual 
Porosity Method (GDPM) where the number of secondary nodes connected to a primary 
node can vary spatially while maintaining the computationally efficient one-dimensional 
decomposition. For instance, in a heterogeneous flow system composed of clay and sand, 
double porosity nodes might be restricted to clay layers. To simplify the logic enabling 
the one-dimensional decomposition, secondary nodes are numbered consecutively after 
the last primary node. The primary node connectivity is increased by one neighbor, but 



this poses no changes for the linear equation solver in FEHM. The logic is summarized as 
follows: 

1. Read the GDPM input. This consists of identifying primary nodes that will be 
converted to GDPM nodes, the conceptualization of the of the GDPM model, the 
volume fraction of the primary node, and the refinement level for the secondary 
material, 

2. Modify array allocations, add additional nodes, and modify nodal connectivity, 
3. When solving the linear equations: (a) perform a one-dimensional decomposition 

for the secondary node variables, (b) solve for the primary node variables, and 
(c) back substitute for the secondary node variables. 

Because the GDPM formulation is entirely geometric in nature, it is independent of 
subsurface physics. Besides the obvious application in representing subgrid-scale 
phenomena, GDPM can also represent far field conditions such as heat conduction from 
overburden or underburden layers by adding one-dimensional columns to the boundaries 
(Zyvoloski et al., 2007). GDPM is particularly useful when adding to or extending (via 
only input files) a pre-existing basin-scale FEHM model developed through tens of man-
years of work in data collection, numerical model construction, and calibration.  

Embedded Wellbore Model. Carbon sequestration, soil vapor extraction, and many 
petroleum industry applications require high-resolution wellbore models. As with the 
GDPM method, the unstructured connectivity in FEHM was used to embed a wellbore 
model (and surrounding casing, cement, and nearby rock) into a pre-existing numerical 
model with no modification other than adding few lines to input files. This yields a 
complete high-resolution, numerical radial model that is, like the GDPM model, 
independent of the physics package. The wellbore model simply replaces existing control 
volumes with the wellbore package. Figure 11 is an aerial view of a patch of primary 
nodes with rectangular control volumes defined by dotted lines. A wellbore model and its 
grid detail is also illustrated. Conceptually, operations are similar to those of the GDPM 
except that the added wellbore nodes have more connections than the GDPM model 
nodes thereby precluding the one-dimensional decomposition. The Embedded Wellbore 
Model (EWM) input requires well position and a model description including the outer 
radius of all included material surrounding the well and the desired layering in the radial 
and vertical directions. The operations are: 

1. Read in position and EWM parameters, 
2. Identify the primary nodes where the EWM will reside. This often includes 

multiple primary nodes in the direction of the well (usually vertical), 
3. Remove volume from the primary nodes so that the model volume is conserved 

with the addition of the wellbore module, 
4. Add connections (primary connectivity and wellbore nodes). It helps to start 

wellbore nodes numbering after the primary nodes, 
5. Adjust the area factors for the primary nodes to account for the presence and 

location of the wellbore module with the primary gridblock. 

The last operation listed above needs additional comment. With an EWM inserted into a 
control volume, the area factors from the primary node to its neighboring primary nodes 



are adjusted to ensure the correct flow resistance from the wellbore model to the 
neighboring primary nodes. When the EWM is located off-center, as is shown in Figure 
9, the area factor adjustments became asymmetric and are weighted to allow preferential 
communication to the nearest neighboring node outside the control volume in which the 
module resides. Pawar and Zyvoloski (2006) compared simulations with the wellbore 
module to high-resolution FD simulations and a control volume finite element simulation 
with high-resolution regridding of wellbore region. For a typical three-dimensional heat 
and mass transfer application, The FD method with telescoping grid resolution in the x 
and y directions required 2.5 times as many nodes and increased CPU time by about an 
order of magnitude. The regridded control-volume finite-element FEHM simulation was 
based on a grid with 12% more nodes and it required only 25% more CPU time. Both 
methods yielded equivalent results. Figure 12 compares the temperature fields at a depth 
close to the bottom of the well using the EWM module to one using the regridded control 
volume finite element for an injector-producer pair. All contour lines closely matched 
except T = 100, which is equal to the uniform initial background temperature. With the 
basic wellbore geometric formulation tested, future work on the EWM will include 
turbulent pipe-flow models for flow within the wellbore.  

With few exceptions, all of the physics modules can use any of the sub grid scale features 
shown in Table 3.  

 

APPLICATIONS 

A sampling of FEHM applications with references are given in Table 2. Some of these 
papers are from a special Vadose Zone Issue (VZJ, August 2005, Volume 4, Issue 3) 
highlighting groundwater research at the Los Alamos National Laboratory.  That issue 
contains additional papers (not mentioned in Table 2) with FEHM applications. The 
applications listed in Table 2, for the most part, are relatively large scale (hundreds of 
thousands of nodes or more). For those readers that are interested in basin scale 
groundwater flow, Keating et al (2003) and Rauskoff and Wolfsberg, eds. (2006) provide 
details of problem setups using FEHM and calibration results. In addition, Keating et al 
(2003) also describes the joint calibration of a high resolution site model and a basin 
scale model made possible by the CVFE method. While Tseng and Zyvoloski (2000) 
have already been mentioned in the context of efficient NR methods, the paper also 
provides a good introduction to the use of the CVFE method to model the heating of a 
nuclear waste repository due to radioactive decay. The paper features a high temperature 
application use of the multi-fluid (air and water) and multiphase (vapor, two-phase, and 
liquid) physics in FEHM. Kwicklis et. al (2006) uses the same physics package in a much 
lower temperature range to estimate near ground surface air and water vapor fluxes. 
Robinson et al. (2005) present a large scale simulation study of an unsaturated zone flow 
system that highlights the use of a tetrahedral based grid (shown in Figure 4) that follows 
the subsurface hydrostratigraphy. Chen et. al. (2007) present an application using FEHM 
to simulate the flow of NAPL and water in a heterogeneous permeability field. These 



papers along with those already mentioned in the various sections presents above 
represent most of the features in FEHM.   

 

COMPARISON WITH EXISTING SOFTWARE 

In a previous section, the CVFE numerical method used in FEHM, was compared to the 
FE, FD, and IFD methods. In this section, FEHM will be compared to MODFLOW and 
TOUGH2. Comparisons of this sort are necessarily incomplete because these codes, like 
FEHM, are under continuous development.  Many capabilities are being developed in 
current projects in beta versions of the software, will be available in subsequent versions. 
Nevertheless some general comparisons can be made.  

 

 

 

 

 

 

FEHM and TOUGH2. Both TOUGH2 and FEHM are, as noted above, in continuous 
development. The codes have more similarities than differences. Both have many 
features related coupled heat and mass transfer as well as the ability to represent sub grid 
scale features. The reader is referred to Pruess (2004) or visit the TOUGH2 website  
(http://www-esd.lbl.gov/TOUGH2/) for an overview of TOUGH2 and current features. 
Both FEHM and TOUGH2 use a  NR iteration.  As described earlier, the IFD numerics of 
TOUGH2 and the CVFE numerics of FEHM are identical on grids that satisfy the 
Voronoi constraints and for diagonal permeability tensors. In this author’s opinion, the 
main numerical differences between FEHM and TOUGH2 are:  

1. FEHM uses analytic derivatives in the NR iteration. TOUGH2 uses numerical 
differences in its NR iteration.  

2. FEHM has unique EOS functional forms described earlier. These facilitate the use 
of analytical derivatives. 

3. FEHM has dual porosity methods and the GDPM method which utilize a fast 1D 
decomposition for the elimination of the secondary nodes. TOUGH2 does not 
“pre-solve” the matrix nodes of the dual porosity 

4. FEHM has the Embedded Wellbore Module (EBM) described earlier.  



The use of numerical derivatives in a NR iteration can also be an advantage for TOUGH2 
in the development of new subsurface physics packages because of the extra coding and 
related debugging time necessary for the analytical derivatives.  

TOUGH2 has an advantage in the area of parallel computing.  Zhang et al., (2003) used a 
parallel computing version of TOUGH2 to simulate the unsaturated zone problem 
beneath Yucca Mountain with a high resolution (2 million nodes) grid. FEHM has, by 
comparison, crude parallel computing features. It does have module (paractr) that divides 
the problems into subdomains defined through user input. The domains communicate 
through ghost nodes and are individually renumbered.  The FEHM formulation requires 
shared memory and convergence rates have been disappointing. 

Important applications for both TOUGH2 and FEHM are CO2 sequestration and nuclear 
waste isolation. Important for terrestrial CO2 sequestration is a coupled mechanical 
model. Here the CVFE formulation in FEHM and the underlying FE grid provides the 
internal computations (briefly described in the section NUMERICAL 
FORMULATION SUMMARY) necessary to implicitly couple the flow, heat, and 
mechanical equilibrium equations. While TOUGH2 provides a very good solution to the 
flow equations, it lacks the additional geometric terms to define the mechanical 
equilibrium equations and sequential iteration with a mechanical stress code is required. 
Jing and Nguyen (2005) describe some approaches to sequentially coupling flow 
equations to the mechanical equilibrium equations suitable for FD and IFD codes.  

FEHM and MODFLOW.  FEHM and MODFLOW are both used in large scale 
applications for isothermal groundwater flow and transport. MODFLOW enjoys the 
world-wide recognition for its use in many applications and its acceptance in legal 
proceedings.   Large scale here means 3D applications that have hundreds of thousands to 
over a million grid blocks.  The MODFLOW flow solution is limited to single phase 
groundwater flow in confined and unconfined aquifer systems so the comparison with 
FEHM will be focused on features relevant to those applications. As noted earlier, the 
CVFE method is equivalent to the control volume FD method employed in MODFLOW. 
Here FEHM has advantages in numerical formulation, grid generation related to 
representing hydrostratigraphy and high resolution sub models. MODFLOW has 
advantages in speed, graphical user interfaces, and the existence of a large number of 
“packages” that facilitate the representation of complex boundary conditions.  One of the 
drawbacks of MODFLOW when used for simulating unconfined aquifers is the solution 
of the highly nonlinear equations representing the flow of water through a partially filled 
gridblock with a Picard iteration technique. The formulation in FEHM effectively recasts 
the relationship between the saturation and hydraulic head in a partially filled gridblock 
in MODFLOW in a NR iteration with upwinding of interblock flow terms. This provides 
a much more stable and viable solution over a wide variety of input parameters. The 
unstructured grid used in FEHM allows for grid resolution to be varied according to 
problem requirements as shown in Figures 2 and 3. To obtain a similar resolution of the 
high flow units in Figure 2, with MODFLOW would require several times the number of 
FEHM gridblocks.  



The flexibility of the FEHM and its CVFE formulation comes at a cost of additional 
computer memory and CPU-time requirements for some applications in comparison to 
FD methods. Zyvoloski and Vessilonov (2006) compared FEHM to MODFLOW on a 
simple steady-state confined aquifer problem with one variable (hydraulic head) on about 
2 million orthogonal gridblocks. The large problem was chosen to minimize the fraction 
of computer time associated with input and output. FEHM reproduced the MODFLOW 
solution and took 1.2 times longer than MODFLOW on a windows-based PC. 

FEHM and other unstructured grid codes, whether traditional finite-element or 
CVFE-based, use more memory that traditional finite difference codes. Additional 
memory requirements include: 

1. Area factors or stiffness matrix. While FD codes require xN  + xN  + zN  
coefficients to be saved, where xN , xN , and zN  are respectively the number of 
gridblocks in the x, y, and z directions. FEHM requires saving NEQ×NEIGH/2 
coefficients, where NEIGH is the average number of nodal connections per node 
with the division by 2 accounting for the fact that an area factor is used by two 
gridblocks. 

2. The integer connectivity array requires storing NEQ×NEIGH+NEQ+1 integers. 
This array is not required for traditional finite difference code because the 
neighbors of any gridblock can be found in a FD code from the logical 
(structured) nature of the grid.  

3. A connectivity array for the symbolic factorization that is required for 
preconditioner factorization levels greater than one, ILU(1). Behie and Vinsome 
(1982) demonstrated speedups using higher factorization levels with the 
preconditioner for thermal problems. FEHM requires an additional ILU 
connectivity array for ILU(2) and higher. For ILU(1), this array is not required 
because the connectivity of the preconditioner is identical to that for the Jacobian 
array described in step 2. Again, because of the structured grid, this additional 
array is not required for FD methods. 

4. The computer memory required for the linear set of equations is often more for 
FEHM than the corresponding FD code because of additional connections for the 
CVFE method. 

5. Because of the use of analytical derivatives in its Newton-Raphson iteration 
FEHM, allocates space for the derivatives of all parameters with respect to all 
active variables. This space is released prior to the linear solution phase of the NR 
iteration. 

The additional storage described above is for simulations that generate symmetric linear 
systems such as those for confined aquifer simulations. For nonlinear flow problems, or 
linear flow problems with contaminant transport, parameter upwinding is often required. 
This puts additional constraints on the linear equation solver because the linear equations 
become unsymmetric and thereby require about twice the computer memory as 
symmetric problems for both the Jacobian and preconditioner matrix. Furthermore, 
required memory for the Krylov acceleration is always greater than those using conjugate 
gradient methods. 



It should be noted that there has been collaboration between the USGS and the FEHM 
development team in the iterative coupling of MODFLOW and FEHM.  This is 
especially important in those applications where existing models, created with many 
man-years of work must function together.  As noted earlier, Dickenson et al. (2007) 
worked out flux-averaging schemes that that allow flux continuity even when the grids do 
not match on model boundaries.  

FEHM CODE STRUCTURE  

FEHM is written in Fortran 77 and Fortran 90 with dynamically allocated memory and 
use modules for global communication. The basic code structure and flow diagram is 
show in Figure 11. The block labeled read input indicates that the input files were 
“scanned” to determine computer memory requirements, allocate memory, and prepare 
needed physics packages. A complete description of all macros is found in the user’s 
manual (Zyvoloski et al., 1996). Of note in the initialization block is the FEHM feature 
that calculates and saves the area factors or that reads in factors calculated by the external 
grid generation program LaGriT (or calculated by a previous run of FEHM). The linear 
equation solver allows an arbitrary level of fill-in for the ILU-based preconditioner. The 
symbolic factorization process creates a connectivity array in CSR format for the 
preconditioner, similar to the nodal connectivity array, with additional connections where 
the fill-in occurs in factorization steps. This process is relatively time consuming and thus 
the symbolic factorization is created only once (and written to a file) for a given grid. 
These two operations greatly speed analyses comprising multiple runs of the same model 
with different parameters. For example, one of the current NTS confined aquifer models 
(shown in Fig. 2) has about 1.5 million nodes and it requires about 10 hours to generate 
the area factors and symbolic factorization. A steady-state run including time to read in 
the area factors and symbolic factorization is about 10 minutes. 

The time step loop is used even for steady-state runs for both linear (e.g., single phase 
confined aquifer models) and nonlinear problems where the simulation is run over long 
times with increasing time step size until there is minimal difference between the inflows 
and outflows (the difference is specified in the input file). For linear models such as 
models representing confined aquifers, this might be a couple of time steps. For nonlinear 
models this could take thousands of time steps. In the balance equations block, all the 
material and energy balance equations are constructed and equation balances are 
monitored whether or not simplifying approximations, such as the RDOF method 
described earlier, are used in the solution of the coupled equations. The linear equations 
block solves the linear system for the NR variable updates. This is where RDOF and 
other techniques are used to simplify the preconditioner for the linear system. For GDPM 
applications, this is where one-dimensional decomposition occurs. This decomposition of 
the secondary nodes reduces the dimension of the linear equations to the number of 
primary nodes. In coupled physics problems (e.g. heat and mass transfer), one or more of 
the degrees of freedom are removed by neglecting terms in the linear system to allow 
pre-factoring of the degrees of freedom. The resulting linear system, often unsymmetric, 
is solved with preconditioned Krylov-space methods. After the solution of the linear 
system, the variables that were pre-eliminated during the GDPM decomposition or 



through RDOF procedures are recovered by through back substitution. The output block 
provides output in SURFER, TECPLOT, AVS, and AVS EXPRESS formats.  

The internal structure in FEHM uses controller modules to organize specific physics 
modules and other functions and the structure decreases development time for new 
physics modules. The controller for a particular physics module, for example the 
CO2-Water-Heat module, reads input for the physics module, allocates memory, 
determines the phase state and independent variables, constructs the material and energy 
balance equations, updates the variables, and prints the controller-physics specific output. 
Newer modules (e.g., CO2 and methane hydrate) employ keywords to further organize 
the input. 

As mentioned previously, the input structure for FEHM is in the form of macro control 
statements followed by a group of input parameters for a specific function or property. 
These input macros are largely order independent. An important feature of FEHM, in 
contrast to traditional finite element computer codes, is the nodal definition of all 
parameters instead of the usual element (or quadrature) definition of parameters. This 
format allows exact duplication of finite difference solutions on orthogonal grids with the 
advantages of the CVFE method on irregular and sloping grids. An important part of 
FEHM’s ability to test grids is the feature that allows definitions of arbitrary parts of 
numerical grid/domain without reference to node numbers (e.g., when assigning unique 
identifiers for properties such as permeability, porosity, layering, point sources, and 
boundary conditions). This is important in unstructured grids because the node 
numbering does not follow a predictable pattern as is the case with traditional structured 
finite difference codes such as MODFLOW. Zones can be defined geometrically by 
defining an arbitrary hexahedral polygon by its nodal coordinates. All nodes within the 
hexahedral polygon are assigned a unique number that can be used to assign 
permeabilities, porosities and other model parameters. LaGriT provides FEHM with the 
zone lists that identify the hydrostratigraphy and model boundaries for hydrostratigraphic 
surfaces provided from a solid earth model. The optimal grid resolution, balancing 
execution time and numerical error, can then be determined using only one set of input 
files that can test a number of grids with differing grid resolution. 

RESEARCH PRIORITIES 

Discretization methods. Permeability anisotropy can be important in upscaling fine grid 
data to larger grid blocks.  Distorted and sloping grids are important in representing 
hydrostratigraphy and faults. Both anisotropy and grid distortion can be represented in a 
flux-continuous have algorithm developed by Lee et al. (1999). This has been 
implemented in FEHM although it is restricted to relatively isothermal single phase 
physics and transport. Improvements in memory usage and model restart efficiency are 
necessary to make it available for general use. Advanced finite-volume mimetic 
difference methods (Lipnikov et al., 2007) are also being actively investigated. 

Advanced linear equation solvers. It is anticipated that future applications in CO2 
sequestration and energy programs will have mass and energy balances that are fully 



coupled with the mechanical force balance equations. Initial testing has shown that 
Smoothed Aggregation Multigrid (Brezina et al., 2005) is very promising in solving 
systems of equations that include mechanical force balances. Reduced degree of freedom 
algorithms will continue to be important as the number of simulated fluids increases. 

Parallelization and model coupling. Improvements in the parallelization of FEHM are 
necessary for studies that have many coupled processes at different scales. Multiple fluids 
and sufficient grid resolution will preclude the use of single processors on the basis of 
available computer memory alone. Parallelization of FEHM has much in common with 
implicit model coupling and both topics are being studied on several projects. The key 
will be the parallelization of the linear solver in the NR loop. The Smoothed Aggregation 
Multigrid method (Brezina et al., 2005) may come to bear because it is already 
parallelized and robustly solves systems of coupled equations. 

CONCLUSIONS 

The historical background and development of FEHM has been presented along with the 
CVFE numerical method and the solution algorithms for nonlinear multiphase problems. 
Major FEHM capabilities and features have been presented with development motivated 
by the following needs: 

1. Numerical subsurface flow and transport models need to be created quickly and 
accurately from data provided by solid earth models such as EarthVision. This has 
been accomplished with the use of the LaGriT grid generation software and the 
ability of FEHM to represent distorted grids and areas of differing grid resolution. 

2. Truncation errors and errors associated with mapping hydrostratigraphy need to 
be thoroughly evaluated. The ability to easily generate multiple grids of different 
resolution and to have input files that are largely independent of grid numbering 
allows these errors to be evaluated. 

3. Flow regions requiring refined grid resolution need to be added with a minimum 
of effort to existing models. The LaGriT software and the CVFE numerics allow 
new grids with areas on high resolution  to be generated with a minimum of 
effort.  

4. Large, often nonlinear, numerical models must be stable and run efficiently in 
terms CPU time and computer memory usage. This is accomplished with the 
CVFE formulation in FEHM. 

5. Multiple model runs, often numbering in the thousands, required by calibration 
and uncertainty analyses require special processing of area factors, symbolic 
factorization, and parameter input. The interface with the PEST software helps 
accomplish this task. 

6. Subgrid scale and other multi-porosity processes need to be added easily to 
pre-existing input data. Subgrid scale processes (for example contaminant 
diffusion from impermeable layers) are often more important in transport 
calculations, which are typically run after a flow model has been developed and 
calibrated.  The GDPM capability addresses this need. 

7. Accurate simulations of near wellbore flow are critical to the simulation of 
geologic CO2 sequestration and unconventional energy extraction from shale and 



oil sands. The EWM allows detailed wellbore simulations to be added to existing 
models. 

FEHM is a result of decades of effort by many researchers at many institutions. 

SOFTWARE AVALIBILITY 

The version of FEHM with the capabilities listed above is available at no cost at the 
website: http://fehm.lanl.gov/. The user is required to sign a single-user or single-
institution license to help maintain version control. The code comes with an installation 
package that includes many example input sets that not only check the installation but 
provide useful examples (Dash, 2002).  
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Software References: 

EARTHVISION 2007, http://www.dgi.com/earthvision. 

EASYMESH, 2007, http://www-dinma.univ.trieste.it/nirftc/research/easymesh/. 

GoCad 2007, http://www.gocad.org. 

LaGriT, 2007, Los Alamos Grid Toolbox (LA-CC-99-0017, http://lagrit.lanl.gov). 

MODFLOW-LGR, 2005, Local grid refinement package, 
http://water.usgs.gov/nrp/gwsoftware/modflow2005_lgr/mflgr.html 

PEST, 2007, http://www.sspa.com/pest/, developed by John Doherty of Watermark 
Numerical Computing, Australia. 

STRATAMODEL 2007, http://www.lgc.com (note Stratamodel is older software and the 
level of support by Landmark Graphics is unclear). 
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Table 1. Summary and Time line for FEHM  developments 

Key Development Reference 
  
Representation of nonlinear terms with shape 
functions. Assembly of finite element equations 
by node rather than elements. Separation of 
geometric and fluid parts of Finite element 
stiffness matrix. 

Zyvoloski (1975) 

Zyvoloski et. al. (1976) 

Formulation and solution of two-phase fully  
coupled heat and mass transfer equations in 
primitive form using Newton-Raphson 
iteration. Two independent variables.  Block-
centered finite difference discretization. 

Zyvoloski et al (1979) 

Extension of techniques to include non-
condensible gas (CO2). Three independent 
variables. 

Zyvoloski and O’Sullivan (1980) 

Combination of non-linear solution techniques Zyvoloski (1983) 



with finite element method.  In the finite 
element stiffness matrix the nonlinear terms 
were separated from the geometric parts. 
Equivalence of finite difference and finite 
element methods obtained through choice of 
integration points in stiffness matrix. Tradition 
upwinding techniques used with finite element 
methods.  
Development of variable level incomplete 
factorization pre-conditioner for unstructured 
grid. Used with Krylov space acceleration 
method to solve the linear equations associated 
ith the Newton Raphson method. 

Zyvoloski (1986) 

  
  

 

 

 

 

 

Table 2. Physics module and features available in FEHM  

Subsurface Process or Feature Independent 
Variable(s) 

Selected Reference 

   
Confined and unconfined 
aquifers, unsaturated-saturated 
flow including Richards’ equation 

hydraulic head Keating et al. (2003) 

Zyvoloski (2005) 
Non isothermal water and water 
vapor 

pressure, temperature 
or saturation (variable 
switching) 

Temma et al (2007) 

Isothermal air-water multiphase 
flow 

pressure, saturation Robinson et al. (2005) 

Non isothermal air-water-water 
vapor-heat flow 

pressure, temperature, 

partial pressure of air 
or saturation 

Kwicklis et al. (2006), 

Tseng and Zyvoloski 
(2000) 

Coupled thermal hydrological 
flow mechanical equilibrium 

pressure, temperature, 
displacements in the x, 
y, and z directions 

Bower and Zyvoloski 
(1997) 



Non isothermal-CO2 -water  pressure, partial 
pressure of CO2 or 
mass fraction of CO2  , 
saturation of  CO2, 
temperature 

Pawar et al. (2007) 

Non isothermal Methane hydrate 
dissociation- water-methane 

Kinetic model: 
Pressure, temperature, 
water saturation, 
hydrate fraction. 
Equilibrium model: 
Combinations of 3 
variables in kinetic 
model. 

Pawar et al (2004) 

Isothermal NAPL (oil)-Water Pressure, saturation Chen et al. (2007)   
Transport and reactive transport Different 

combinations, see 
reference. 

Robinson et al. (2000) 

Note; Pressure means total system pressure 

 

 

 

 

 

Table 3. Subgrid scale features available in FEHM  

 
Subgrid scale feature  Selected Reference 
Dual porosity   Zyvoloski et al (1991) 
Generalized dual porosity   Zyvoloski et al. (2007)  
Dual permeability  Tseng and Zyvoloski 

(2000) 
Embedded wellbore model  Pawar and Zyvoloski 

(2006) 



FIGURES 
 
 

 
a) 

 
b) 
 
Figure1. Definition of Control Volume Areas in the CVFE method. a) orthogonal grid b) 
non orthogonal grid. 
 
 

 
 

Figure 2. Grid generation with LaGriT showing a hexahedral-based grid with octree 
refinement. 
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Figure 3.  Tetrahedral-based grid of a unsaturated zone flow system 
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Figure 4. Tabular interpolation on a variably spaced grid with a phase transition line-grid 
with variable pressure spacing and uniform temperature spacing.  
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Figure 5. Tabular interpolation on a variably spaced grid with a phase transition line. -
detail of a block with phase line.
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Figure 6. Sloping statigraphy represented with a coarse finite difference grid and a grid 
with sloping coordinates. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 

 
 
Figure 7. Grid testing with multiple grids 
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a.   FD                                                                             b. CVFE 
 
 
Figure 8. Control volumes on sloping grids.  a. standard FD 5 point connectivity 
 b. CVFE connectivity 
 
 
 
 



 
 
a) 
 

 
b) 
 
 
 

 
c)   

 
d)  
Figure 9.  Consequenses of using a CFD  stencil (7 point stencil in 3D) with a non 
orthogonal grid with transport. a) vertical crossection of 3D grid, b) the flow away from 



the non-orthogonal portion of the grid, c) the transport front  produced with the CFD  
point stencil and d) the correct front produced with a 27 point stencil. 
 
 
 

 
 
a) 
 
 
 

 
b) 
 
Figure 10.  Double porosity models a) Traditional double porosity method with one 
immobile node. b)  Generalized double porosity with multiple immobile nodes. 



Embedded 
wellbore patch

 
 
 
Figure 11 Conceptual description of the Embedded Wellbore Model (EWM). 
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Figure 12.  Comparison of EWM simulation with a re-gridded CVFE simulation Note the 
contour T= 100 is also the initial uniform temperature and thus susceptible to noisy 
contours. 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 

Read Input 
• Scan input files to determine memory requirements 
• Allocate enough memory to read input files

 
 
 
 
 
 
 
 
 

Initialization 
• Allocate additional memory  
• Calculate or read area factors 
• Calculate or read symbolic factorization for the pre-

conditioner array for the linear equation solver 

 
 
 
 
 

State 
• Determine phase states   
• Change independent variables as necessary 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fluid Properties 
• Calculate fluid properties and derivatives 
• Evaluate boundary conditions, parameters and derivatives 

 

Balance Equations 
• Formulate discrete mass and energy balance equations  
• Assemble Jacobian matrix for linear system 

Linear Equations 
• Pre-factor, simplify, or eliminate degrees of freedom of linear 

system as appropriate 
• Solve linear system 

Update variables 

N
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Output  
• Selected times –selected nodes 
• Full field output  for contour plots 



Figure 13. Flow diagram for FEHM 
 



 



  
 
 
 
 

 


