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Quantitative implementation of Preisach-Mayergoyz 
space to find static and dynamic elastic moduli in rock 

R. A. Guyer, • K. R. McCall,: G. N. Boitnott, • 
L. B. Hilbert Jr. 4,• and T J Plona c 

Abstract. In this p•per we describe the •n•lysis of que•si-st•tic stress-strefin d•t• 
using a Preisach-Mayergoyz (PM)[after Preisach, 1935; Mayergoyz, 1985] space 
picture for the elastic behavior of rock. In contrast to the traditional •n•lytic 
•ppro•ch to stress strain (•n energy density •s • function of the strain inv•ri•nts), 
the PM sp•ce picture reproduces hysteresis •nd discrete memory seen in the d•t•. 
In •ddition, the PM sp•ce picture establishes • relationship between experimental 
d•t• •nd • number density p of microscopic mechanical units within the rock. The 
density p •llows us to m•ke quantitative predictions of dynamic elastic properties. 
Determining p from quasi-static stress-strain d•t• requires us to solve • highly 
underdetermined inverse problem. We explore the following three methods of 
solving the inverse problem: simulated •nne•ling, normal modes, •nd exponential 
dec•y. All three methods •re tested on • Bere• s•ndstone d•t• set •nd found to 
give •n excellent description of stress versus strain. Choosing one method, the 
normal mode method, we •n•lyze quasi-static stress-strain curves on two •ddition•l 
s•ndstones, n•mely, •nother s•mple of Bere• •nd • s•mple of C•stleg•te s•ndstone. 
From the density p for e•ch s•mple we predict the dynamic modulus •s • function of 
pressure •nd the nonlinear elastic constants. For e•ch of these c•ses the •greement 
between the predictions b•sed on p •nd experiment is quite good. We establish that 
P M sp•ce provides • quantitative description of the elastic response of • rock •nd 
that PM sp•ce m•y be found by • v•riety of inversion methods. 

Introduction 

This paper is the second in a series on the elastic 
properties of rocks. In the first paper [McCall and 
Guycv, 1994] we introduced a description of rock elastic- 
ity that accounts for observed history and memory fea- 
tures. The central construct in the description was the 
Preisach-Mayergoyz (PM) space [after Pr½isach, 1935; 
Maycrgoyz, 1985] in which the macroscopic material re- 
sponse is tracked using the density p of microscopic 
mechanical units (the density in PM space). McCall 
and Guycv [1994] showed that from p one could learn 
the elastic properties of the rock (the quasi-static mod- 
ulus, the dynamic modulus, the strength of the cu- 
bic and quartic nonlinearities, etc.). In addition, we 
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suggested that quasi-static stress-strain measurements 
make it possible to learn p. Thus the recipe for the 
elastic properties of a rock is (1) collect quasi-static 
stress-strain data, (2) invert for p (PM space), and (3) 
predict elastic properties. The purpose of this paper is 
to demonstrate the determination of p from quasi-static 
stress-strain data. We call this the inverse problem. We 
use data on three sandstone samples called B1, B2, and 
C. We use the p that we find for these samples to de- 
termine their linear and nonlinear elastic properties. 

We begin with a section reviewing the traditional the- 
ory of elastic wave propagation in nonlinear materials. 
Then we review the principal results of application of 
the PM space picture. Particular attention is given to 
the results leading to formulation of the inverse prob- 
lem. Three methods for solving the inverse problem are 
described and applied to quasi-static stress-strain data 
on the B1 sample. We choose one of these methods, 
the method of normal modes, and apply it to all three 
data sets. We find p for each data set and show how p is 
used to predict the behavior of quasi-static stress-strain 
curves, predict the dynamic modulus, and predict the 
linear and nonlinear elastic coefficients. 

Review of the Traditional Theory 

The traditional theory of elastic wave propagation 
in a nonlinear material is based on expressing the en- 
ergy density as a function of the scalar invariants of 
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the strain tensor. Landau and Lifshitz [1959] and Mur- 
naghun [1951] find the equation of motion for the dis- 
placement field u from 

K •1 ½121 -•- elkCliCk -•- B 2 • -- •l½i2k-•- 2 3 • I elkell 
Ca 

+ (1) 

•ik -- O(O•i/O2k)' (2) 
: (3) Po Ot 2 OXk 

where S is the energy density, p0 is a constant mass 
density, a is the stress tensor, e is the strain tensor, 

l ( (9ui (9uk OUl OUl ) (4) - + + ' 

and O(e 4) represents terms of order e 4. The constants 
/•, K, A, B, and C are determined by experiment; for 
example, K is the bulk modulus of the material [Win- 
kler and Xingzhou, 1996]. This formulation, in which 
the stress is taken to be an analytic function of the 
strain, has been very successful in describing the statics 
and dynamics of a wide variety of materials [Ashcroft 
and Mermin, 1976] including liquids [Hamilton, 1986]. 

Some of the best known properties of rocks are not 
described by the model embodied in these equations. 
For example, the dynamic modulus is usually greater 
than the static modulus [Plona and Cook, 1995], a re- 
sult that was explained by appealing to a frequency ef- 
fect or the difference between adiabatic (dynamic) and 
isothermal (static) measurements [Blot, 1956]. Also, 
the traditional theory provides neither a qualitative nor 
a quantitative explanation of a stress-strain equation of 
state with hysteresis and discrete memory [Holcomb, 
1981]. In rock the stress is not an analytic function of 
the strain. 

Review of the PM Space Picture 
The elastic properties of a rock are due to the stress- 

strain response of many complex structural features 
such as cracks, joints, contacts, and grain boundaries. 
The behavior of any one of these structural features is 
complicated and often hysteretic. The experiments ex- 
amined here, uniaxial stress strain over a fairly modest 
pressure range, are sensitive to the ensemble behavior 
of a vast number of structural features (109-10•/cm 3) 
in the rock. Thus we assign to each structural feature 
only those properties essential to assessing its participa- 
tion in a uniaxial stress experiment. The structural fea- 
tures are replaced by simple mechanical units, springs 
that (1) enforce one of two displacements between their 
ends, lo (o: open) at low pressure and lc (c: closed) 
at high pressure and (2) respond hysteretically to the 
pressure they are called upon to support. 

The mechanical units are hysteretic and respond to 
different opening and closing pressures. Thus the elastic 

response of the units and the system as a whole depends 
on the pressure history of the rock. To describe the 
elastic behavior of a rock, we must know the pressure 
history and be able to relate the pressure history to the 
ensemble behavior of hysteretic mechanical units. 

PM space is a construct that allows us to predict 
the ensemble behavior of many hysteretic mechanical 
units. PM space is a space in which the behavior of 
the mechanical units in the rock is tracked [McCall and 
Guyer, 1994]. In the following we review the contents 
and consequences of PM space (the forward calculation) 
and the construction of P M space from experimental 
data (the inverse calculation). 

Forward Calculation 

1. A mechanical unit that closes at pressure Pc and 
opens at pressure Po is located in PM space at (Pc, Po). 
A mechanical unit that is open (closed) is said to be 
in state 0 (1). In the continuum limit, i.e., 109-10 x2 
units/cm 3, we employ the density p(Pc, Po)dPcdPo, a 
measure of the fraction of mechanical units in alPcalPo 
at (Pc, Po). A coarse-grained picture of PM space uses 
bins of area AP x AP at (mAP, nAP), where m, n - 
0,..., N- 1. The minimum pressure is zero, and the 
maximum pressure is Prnax -- NAP. Thus the fraction 
of mechanical units in bin (m, n) is 

/(,,+•)aP /(•+•)aP - (S) 
JmAP JnAP 

All of the units in a bin are in the same state, 0 or 1; 
we write •rr•, - 0, 1. 

2. A pressure protocol leads to a trajectory 
__ __ 

E[Px,...,Pœ] that separates the region of PM space 
having units in state i from the region having units in 
state 0. The pressure extrema Px,..., Pœ characterize 
the pressure protocol. In the coarse-grained picture the 
pressure protocol is coarse grained on scale AP. 

3. The stress-strain relationship is 

•- A•f(E), (6) 
where A• - (lo- lc)/lo and f(E) is the fraction of 
mechanical units in state 1, i.e., the fraction of the me- 
chanical units inside E. In the coarse grained picture 

N-1 m 

(7) 
m:0 n:O 

4. The static modulus measured with a pressure pro- 
tocol cycling from zero to the maximum pressure and 
back to zero (P = 0 • NAP • 0) has two values at 
each pressure. When the applied pressure is increasing, 

P 

f o)do 
or 

Kl(rn) -• - Ae • p(m, n)AP. (8b) 
rz •O 

When the applied pressure is decreasing, 

IC, (P)-X - Ae p(Pc, P)d?• 
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or 
N-1 

Kl(n) -• - A( • p(m, n)AP. (9b) 

5. The dynamic modulus, i.e., the modulus appropri- 
ate to a small pressure oscillation, is given by 

where A(P) is the diagonal part of p. 
grained picture 

(10a) 

In the coarse- 

(10b) 

6. The nonlinear elastic constants of traditional wave 

propagation theory may be calculated from the dynamic 
modulus. This calculation is described in the results 

section. 

an optimum data set and computational strategy for 
uncovering the elastic features of interest. We expect 
this to involve a flexible and precise experimental setup 
working interactively with a flexible and facile compu- 
tational apparatus. 

Methods of Inversion 

We illustrate three methods of inverting stress-strain 
curves to find p(m, n). The problem is severely under- 
determined; thus the solution is not unique. The three 
methods of inversion are simulated annealing (SA), nor- 
mal mode analysis (NM), and exponential decay (ED). 
The data we use for the inversions are always a sub- 
set of the data available. We use the inversion results 

to predict additional parts of the data sets to establish 
predictive capability. 

Inverse Calculation 

Equations (5)-(lOb) describe the results of forward 
modeling with PM space; that is, these equations show 
how to use the density in P M space to learn about the 
stress-strain relationship, the elastic moduli, etc. This 
forward modeling is illustrated in detail by McCall and 
Guyer [1994]. Equations (5)-(10b) also can be used 
in conjunction with experiment to learn the content of 
PM space, the density P(Pc, Po). A brief sketch of the 
inverse calculation, from experiment to PM space, is 
given by Guyer et al. [1995]. The development and use 
of this idea are the principal focus of this paper. 

From (8b) we see that in the coarse-grained picture 
the inverse modulus, calculated from the stress-strain 
curve as the pressure is increased, is a column sum in 
PM space. That is, Kl(m ) is proportional to the frac- 
tion of mechanical units in bins (m, 0)- (m, m)in PM 
space. (The absolute number of mechanical units in 
the bins is unimportant because the physical quantities 
of interest are related to the fractional content of the 

bins.) From (9b) we see that Ki(n)is related to the 
row sum, the fraction of mechanical units in bins (n, n) 
-(n,N-1). 

For a typical coarse graining of a stress-strain curve 
there are many more bins covering PM space than there 
are values of KS and KT, i.e., column and row con- 
straints. For example, if 0 < P < 15 MPa and AP = 
0.5 MPa, then the number of bins is N(N + 1)/2- 465 
and the number of constraints is N + N - 60. We want 

to invert known values of K 1 and Ki to find p(m, n). 
This problem is severely underdetermined (in the ex- 
ample above we have 465 unknowns and 60 equations); 
however, we can find a plausible solution using a variety 
of methods. We describe three methods we have used 

to address the problem of turning a stress-strain data 
set into p. We do this using three different data sets, 
B1, B2, and C. Each method has been used on all of 
the data sets. Here we show the use of each on the B1 

data set. Then we choose one of the methods and use 

it to analyze the other two data sets. 
One of our aims is to show that the inversion of stress- 

strain data is feasible and useful. Ultimately, we want 

Simulated Annealing 

The equations for K•(i) and K• -••i,) i: 0,... N- 1, are a set of constraints Ck, k - i..,2N i, on 
the N(N + 1)/2 numbers p(m,n), m - 0,...,N- 1, 
n - 0,..., m. The constraints can be used to determine 
a PM space energy to be minimized, 

2N-1 

1 2 
Ec-• Z (Ck-S•[p]) , (11) 

k--O 

where 
J 

•j - y• p(j, n), (12a) 
n----0 

N-1 

S•v+j - y• p(m,j), (12b) 
m=j 

and j - 0,..., N - 1. Variation of the energy Ec with 
respect to p(m, n) leads to (8b)-(9b). To these modulus 
constraints we add the requirement of smoothness in 
the form of an energy that depends on the gradient of 
p (springs in the x and y directions), for example, 

Es - • •[p(rnq- 1,,)- p(m,n)] 2 
m:0 n=0 

+i + 1) - (la) 
m=l n=0 

The total energy of PM space is E = Ec + AEs, where 
,k is a parameter set to maximize smoothness without 
compromising the primary contraints embodied in 
We minimize E computationally, using the following 
algorithm. 

1. Load the bins in PM space at random with No 
mechanical units. Because we want the fraction of units 

f(E) in state 1 (see (6)), we are free to choose No for 
convenience, e.g., No = 5000. Denote the arrangement 
of mechanical units X•0. 

2. Calculate the energy E[X0] = Ec[X0] + AEs[X0] of 
this initial configuration of the mechanical units. 
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3. Make a rearrangement of the mechanical units by 
choosing the address of two bins at random and moving 
one mechanical unit from the first bin to the second bin. 

4. Calculate the energy ELI1] : Ec[I1] + AEs[I1] 
of the new configuration of the mechanical units. If 
E[I1] < E[I0], accept the configuration I1. If E[I1] > 
E[/0], accept the configuration with probability 
p = exp[-(E[/1]- E[Io])/kT], where kT is a control 
parameter, the analog of temperature in a thermody- 
namic system. This acceptance scheme is called the 
Metropolis algorithm [Metropolis et al., 1953]. 

5. Return to item 3, gradually lowering the value of 
the control parameter kT. 

This procedure is stopped when the energy has been 
minimized or when it leads to no important further 
evolution in the energy. A more complete description 
of simulated annealing methods is given by Press et 
al. [1992]. Simulated annealing has the advantage of 
permitting evolution among configurations in a man- 
ner analogous to the evolution of a physical system at 
finite temperature; the system attempts to reach the 
lowest-energy state by a multiplicity of routes that are 
not available at absolute zero. 

The degree to which the total energy E respects the 
smoothness constraint depends upon the value of A. If A 
is very large, the SA procedure generates a smooth solu- 
tion that only weakly satisfies the modulus constraints. 
In the opposite limit, A - 0, the solution satisfies the 
modulus constraints exactly and is one of a large num- 
ber of degenerate, nonsmooth solutions. 

Guyer et al. [1995] used a SA procedure to invert 
a data set on Berea sandstone to determine p(m, n). 
Among the qualitative results was that the density in 
PM space is composed of two parts, a diagonal or non- 
hysteretic part containing a majority fraction of the 
mechanical units and an off-diagonal, background, or 
hysteretic part. That is 

The sum on the right-hand side is over the contents of a 
rectangular collection of bins that are part of the back- 
ground only. There are N- 1 nontrivial strain differ- 
ences at Pk, where k = 0,..., N- 2. These differences 
are N- 1 strain constraints on the background density. 
The normal mode method uses the strain constraints of 

(15) to find pB(m,n), m -7: n, in (14). Modulus con- 
straints then determine the diagonal parts of p. 

Let us suppose that we can describe the background 
density with a complete set of orthonormal functions 
that span PM space, O•(rn, n). We expand the density 
pB(rn, n) in terms of these functions, 

p•(m, n) - • b•O•(rn, n). (16) 

Given (16), the strain constraints are a set of equa- 
tions for the amplitudes b•. As there are N- 1 strain 
constraints we can completely determine no more than 
N- 1 functions from the complete set. The inversion for 
the background density is again underdetermined. We 
impose an additional smoothness constraint like that in 
(13) and choose to use the longest wavelength modes 
from the complete set. The procedure is to minimize 
an energy, embodying the strain and smoothness con- 
straints, by varying the N- 1 variational parameters 
b•. Details of the procedure are discussed further in 
the appendix. 

Exponential Decay 

As most of the mechanical units are on the diagonal 
in PM space, it is plausible to assume that the den- 
sity of mechanical units in the background of PM space 
decreases as one goes away from the diagonal. Let us 
adopt the analytic approximation 

p•(k, l) - p•(k, k - 1)e -•(k-l-•), (17) 

p(m, n): A(m)Sm,n + pB(m, n), (14) 

where A(m) is the nonhysteretic part of p(m, n) and 
ps(m, n) is the background or hysteretic part of p(m, n). 
With hindsight this is apparent from examination of the 
stress-strain curves; they are almost not hysteretic. One 
of the virtues of the simulated annealing procedure is 
that it does not need to be prompted to find this struc- 
ture. Rather, it has the freedom to find this or any 
other solution that is consistent with the data. A P M 

space density of the analytic form in (14) suggests two 
alternative methods for finding p(m, n). 

Normal Modes 

The SA procedure uses the experimental modulus to 
constrain row and column sums in P M space. We pos- 
tulate in (14) that each of these constraints is the sum 
of a diagonal and an off-diagonal contribution. It is pos- 
sible to study the background and diagonal separately 
by considering the difference between two values of the 
strain at the same pressure (decreasing and increasing) 

- = 
N-1 k 

y•, y•, p,(m,n). (15) 
m----k+l n--0 

wherel=0,...,k-1 andk= 1,...,N-1. 
The strain constraints on the background density 

given by (15) are constraints on the sum on p8 (rn, n) for 
a sequence of overlapping rectangles. The exponential 
decay procedure is to start with the smallest rectangle, 
at m- N-l, n = 0,...,N-2. We adopt the ana- 
lytic approximation in (17) and take n as known, e.g., 
e -• = 0.9. Then p8 in column N- 1 is given by 

po(N - 1, n) - p•(N - 1, N - 2)e -•(N-2-"), (18) 

CN-2 -- pB(N - 1, N-2) 
N-2 

• e -'•(N-2-'•), (19) 
n=0 

or 

ON-2 

p•(N - 1, N - 2) - N-2 -•(N 2-•) (20) •-•n =0 e - 

Substituting ps(N- 1, N-2) into (18), we know the 
content of the background bins in the column N- 1. 
The next constraint we look at involves bins in this 

column and bins in the column to the immediate left, 
m = N- 2. If we assume the same analytic form as 
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in (18) for column N- 2, we can find the amplitude 
that describes the bins in this column. We proceed 
in this manner going next to the constraint involving 
columns N- 3, N- 2, and N- 1. In this way we 
systematically develop the entire background density. 
Using the modulus constraints, we find the diagonal 
part of p(m, n). 

Results 

In this section we describe the application of SA, NM, 
and ED to three data sets denoted B1, B2, and C. These 
are stress-strain data sets on sandstones. 

1. B1 refers to a data set on Berea sandstone at- 

tributed to Boitnott [1993]. The B1 data set consists of 
a series of smaller and smaller stress-strain loops, shown 
in Figure 1; the pressure protocol is shown as an inset. 

2. B2 refers to a data set on Berea sandstone at- 

tributed to Hilbert el al. [1994]. This data set con- 
sists of a single, large, closed stress-strain loop and eight 
small loops that are generated as the large loop is tra- 
versed. The data set and pressure protocol are shown 
in Figure 2. 

3. C refers to a data set on Castlegate sandstone 
attributed to Plona and Cook [1995]. This data set 
consists of a series of large stress-strain loops and a 
sequence of small loops in the interior. The data set 
and pressure protocol are shown in Figure 3. 

We will describe the analysis of these data sets as 
follows. First we use SA, NM, and ED on a single data 
set, B1, in order to characterize the three methods of 
inversion. Then we employ NM on all three data sets. 
We invert for the PM space density for each data set and 
use it to predict features in the stress-strain response 
and make a quantitative assessment of the linear and 
nonlinear elastic constants. 

2 

0 4 8 12 16 20 24 

Load (MPa) 

Figure 2. Experimental load versus strain for the 
Berea sandstone sample designated B2. Increasing pres- 
sure is the lower part of each strain loop. The pressure 
protocol is shown in the inset. The large pressure loop 
(0 MPa --• 24 MPa --• 0 MPa) was used to find the 
density in P M space. 

Analysis of B1 data 

We invert the second stress-strain loop in the B1 data 
set for p(Pc, Po) using SA, NM, and ED. From each PM 
space we predict the modulus as a function of pressure 
for the four smaller loops in Figure 1 and compare our 
results to experiment. 

The data on the second loop span the pressure range 
(0.7186 MPa, 13.5502 MPa). The corresponding strain 
range is (0.0007, 0.0024). The pressure interval is bro- 
ken into 30 bins using AP = 0.4277 MPa. At each of 

0 
0 2 4 6 8 10 12 14 

Load (MPa) 

Figure 1. Experimental load versus strain for the 
Berea sandstone sample designated B1. Increasing pres- 
sure is the lower part of each strain loop. The pressure 
protocol is shown in the inset. The second pressure loop 
(1 MPa --• 14 MPa --, 1 MPa) was used to find the den- 
sity in Preisach-Mayergoyz (PM) space [Preisach, 1935; 
Mayergoyz, 1985]. 

0.5 

0.4 

o•O 0 . 3 

0.2 
-2 

Load vs Time 

0 2 4 6 8 10 

Load (MPa) 

Figure 3. Experimental load versus strain for the 
Castlegate sandstone sample designated C. Increasing 
pressure is the lower part of each strain loop. The pres- 
sure protocol is shown in the inset. The small pressure 
loop (6 MPa --• 3 MPa --• 6 MPa) was used to find the 
density in PM space. 
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the pressures, Pk = 0.7186 + kAP, where k = 0,..., 29, 
we find the value of the strain and the inverse modulus 
from the data. As a practical matter, our procedure 
for doing this is to fit the experimental strain data (the 
stress-strain curve for pressure increase and, separately, 
the stress-strain curve for pressure decrease) to a 10- 
term polynomial in P, obtaining QIo(P) and Qio(P), 
respectively. We evaluate these polynomials at Pk to 
obtain the values of the strain at pressure P•. To find 
the inverse modulus on pressure increase (decrease), we 
take the derivative of the polynomial Q10 (Qi0) analyt- 
ically and evaluate it at P•. 

Simulated annealing method on B1. The 30 
values of Kl(k ) are 30 constraints on the column sums 
in PM space; the 30 values of Kl(k) are 30 constraints 
on the row sums in P M space. The sum of the column 
constraints is equal to the sum of the row constraints, 
and both are equal to the total number of mechanical 
units in P M space. As the physical quantities are pro- 
portional to the fraction of mechanical elements in P M 
space, we take the total number of mechanical units to 
be a convenient number, in this case, 5000. To the mod- 
ulus constraints we add four smoothness constraints. 

These are near neighbors in the x and y direction, i.e., 
[p(m + 1, n) - p(m, n)] •and [p(m, n + 1) - p(m, n)] • 
and next near neighbors, parallel and perpendicular 
to the diagonal, i.e., [p(m + 1, n + 1)- p(m, n)] 2 and 
[p(m, n)- p(m + 1, n- 1)]• The smoothness parameter 
• = 3. The annealing procedure is started at high tern- 

12- 

3 6 9 

Pressure (MPa) 

0.0 0.5 1.0 1.5 2.0 

log(number density) 

Figure 4. B1 P M space density using simulated an- 
nedhug (SA) method. The density p(m, n) for the B1 
sample, found using the SA method, is shown as a func- 
tion of (m, n) using a logarithmic gray scale. 

35 

3O 

25 

o½o 
5 

0 2 4 6 8 10 12 

Load (MPa) 

Figure 5. B1 modulus versus pressure from SA results. 
The modulus is plotted as a function of the load for 
sample B1. Increasing pressure is the lower part of each 
modulus loop. The solid line is the experimental data; 
the solid circles are the predicted modulus using the P M 
space density determined by the method of simulated 
annealing. 

perature, and the temperature is reduced by a factor of 
0.9 at each iteration. An iteration consists of 5 x 104 
unit moves or 5 x 105 tries [Press et al., 1992]. Con- 
vergence occurs in 80-150 iterations. An SA inversion 
of this size requires 15-25 min of computer time on an 
HP715/100 workstation. 

The results of using the SA method are shown in Fig- 
ure 4, a gray scale plot of the P M space density using the 
logarithmic gray scale below the figure. The hysteretic 
mechanical elements, those off the diagonal, have den- 
sity much lower than the nonhysteretic elements, those 
on the diagonal. The background density falls off as one 
moves away from the diagonal. 

The modulus as a function of pressure for various 
pressure protocols can be calculated from PM space us- 
ing (Sb) and (9b). We use p(Pc, Po) to calculate the 
modulus as a function of pressure for the four pressure 
loops in the latter part of the B1 pressure protocol. The 
experimental modulus versus pressure and the predicted 
modulus versus pressure are shown in Figure 5. Since 
the agreement between the two sets of curves is quite 
good, we conclude that the SA analysis of a single large 
loop gives us predictive capability for smaller loops. 

Normal mode method on B1. The 29 values of 

the strain differences at pressures P•, k = 0,..., N- 2, 
are strain constraints on the background. We use the 
29 lowest modes of the complete set c)u,(m,n) with 
(/•, •) = (0, 0), (1, 0),... (5, 5), (6, 4), (7, 2), as defined in 
the appendix. The smoothing involves springs in the 
x and y directions, leading to an energy that penal- 
izes short-wavelength modes. For the strength of the 
quadratic smoothing we use A = 0.2. The calculation 
requires the inversion of a 29 x 29 matrix, a matter of 
seconds on a workstation. 
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The results of the NM inversion for the B1 data set 

are shown in Figure 6; p(m,n) in arbitrary units is 
plotted as a function of (m, n). To facilitate compar- 
ison of Figure 6 with Figure 4, we have used 5000 me- 
chanical units and the same gray scale in both figures. 
The NM P M space density is qualitatively and quanti- 
tatively similar (but not identical) to the SA PM space 
density. 

Using the PM space density shown in Figure 6, (8a), 
and (9a), we find the modulus versus pressure curves 
appropriate to the last four loops in the experimen- 
tal pressure protocol. The predicted modulus is shown 
in Figure 7 along with the corresponding experimental 
data curves. As with the simulated annealing case, the 
agreement between prediction and experiment is quite 
good. 

Exponential decay method on B1. The 29 val- 
ues of the strain difference at the 29 pressures Pk : 
0.7186 + kAP, k: 0,...,28 are 29 constraints on the 
background. We chose n • 0.1, e -• = 0.90, in (17) for 
our calculations. The calculation takes negligible com- 
puter time. The exponential decay method leads to the 
P M space density shown in Figure 8. As with the other 
two methods, the total number of mechanical units has 
been taken to be 5000 to facilitate direct comparison 
of the PM space densities. Use of this PM space den- 
sity, (8a), and (9a) leads to the modulus pressure curves 
shown in Figure 9. 
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Figure 7. B1 modulus versus pressure from NM re- 
sults. The modulus is plotted as a function of the load 
for sample B1. Increasing pressure is the lower part of 
each modulus loop. The solid line is the experimental 
data; the solid circles are the predicted modulus using 
the P M space density determined by the method of nor- 
mal modes. 
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Figure 6. B1 PM space density using normal modes 
(NM) method. The density p(m, n) for the B1 sample, 
found using the NA method, is shown as a function of 
(m, n) using a logarithmic gray scale. 
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Figure 8. B1 PM space density using exponential de- 
cay (ED) method. The density p(m, r•) for the B1 sam- 
ple, found using the ED method, is shown as a function 
of (m, n) using a logarithmic gray scale. 
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Figure 9. B1 modulus versus pressure from ED results. 
The modulus is plotted as a function of the load for 
sample B1. Increasing pressure is the lower part of each 
modulus loop. The solid line is the experimental data; 
the solid circles are the predicted modulus using the PM 
space density determined by the method of exponential 
decay. 

Comparison of the three methods of inversion. 
Figures 5, 7, and 9 show the modulus-pressure curves 
found from three different solutions to the problem of 
inverting stress-strain data for the P M space density. 
In each case the modulus pressure curves are in good 
agreement with experiment. Each method has particu- 
lar positive and negative features. 

The SA method is the least biased by our assump- 
tions about the structure of P M space. The SA filling 
of PM space is flexible because there are as many vari- 
ational parameters as there are bins. However, the SA 
method requires an order of magnitude more computa- 
tional time than the NM method. 

The NM method reduces the number of variational 

parameters by an order of magnitude over the SA 
method but does not a priori enforce a particular den- 
sity distribution. The NM method is very fast, requir- 
ing only the inversion of an N x N matrix. However, 
the choice of normal modes will influence the superfi- 
cial structure of PM space. For example, our choice 
of cosines as normal modes produces a small sinusoidal 
variation in the P M space structure. This is most pro- 
nounced in the analysis of the Castlegate sandstone 
data. 

The ED method is the most biased by our assump- 
tions. It is the fastest computationally because the ED 
method leaves only one parameter to be chosen by the 
operator. The ED method enforces a PM space that is 
exponentially decaying away from the diagonal. Thus 
we may inadvertantly miss interesting structure in the 
PM space of unusual rock samples. 

Our results do not constrain our choice of method. 

We prefer the NM method. It is a compromise between 
the SA method, having as many variational parame- 

ters as there are bins, and the ED method, having one 
parameter and a definite prejudice as to the behavior 
of the density. In addition, the NM method requires 
less computer time than the SA method, although it 
requires more computer time than the ED method. Be- 
low, we illustrate the use of the NM method on all three 
data sets. 

Normal Mode Method on B1, B2, and C 

B1. The previous section contains the PM space 
density for the B1 sample using the NM method of 
analysis (Figure 6). Figure 7 shows the result of using 
this PM space density to predict the elastic response to 
pressure protocols other than the one used in finding 
the density. It is possible to study other elastic proper- 
ties using the PM space density. From (10b) and prior 
discussion we see that the dynamic modulus is deter- 
mined by the diagonal part of the PM space density. 
As a practical recipe, we have 

= Aep(k, k)AP. (21) 

where Kd is the dynamic modulus and p(k, k) is the 
fraction of the mechanical units on the diagonal at 
The dynamic elastic modulus calculated by this proce- 
dure is shown in Figure 10. Also shown on the figure are 
the static elastic moduli calculated from the experimen- 
tal data. These are simply the slope of the experimental 
pressure-strain curve. There are two static curves, one 
for pressure increase and one for pressure decrease. 

The dynamic modulus in Figure 10 is an increasing 
function of the pressure with a long-wavelength sinu- 
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Figure 10. B1 moduli versus pressure from NM re- 
sults. The open circles are the static modulus for pres- 
sure increase from the experimental data, i.e., from the 
second pressure loop described in Figure 1. The open 
squares are the static modulus for pressure decrease. 
The solid squares are the dynamic modulus calculated 
from the diagonal component of the PM space density. 
The solid line is the quadratic fit to the dynamic mod- 
ulus. 
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soidal deviation from the smooth curve described below. 

The dynamic modulus result comes from a single cell in 
PM space rather than an average over many cells. Thus 
the estimated error bars are approximately the height 
of the sinusoidal deviation. The dynamic modulus is 
at every pressure greater than the static modulus. The 
two moduli would be equal only if there were no off- 
diagonal mechanical elements. The dynamic modulus 
and the static modulus are almost equal at the points 
of pressure reversal in the pressure protocol. This is in 
agreement with theory [McCall and Guyer, 1994]. 

The dynamic modulus found from the density in P M 
space can be used to estimate the nonlinear elastic con- 
stants. We define the dynamic modulus as a function 
of the strain field 

20- 

15- 

10- 

• 

5 10 15 20 

Ka - • [1 + fiV.u+ 5(V. u) 2] (22) Pressure (MPa) 

where fi and 5 are the nonlinear elastic coefficients, di- 
mensionless measures of the cubic and quartic anhar- 
monicities, and u is the displacement. Since Ka is mi- 
nus the derivative of P with respect to the strain we 
use 

e__V.u_ ß - (V.u) 
to write Ka as a power series in P. 

-[ 
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Figure 11. B2 P M space density using NM. The den- 
sity p(m, n) for the B2 sample, found using the method 
of normal modes, is sho'wn as a function of (m, n) using 
a logarithmic gray scale. 

where 

- 

bK-5 2 (26) 
To find a and b, we fit the dynamic modulus shown in 
Figure 10 to (24)__with the pressure variable P replaced 
by P- P. Here P is the average pressure and K is the 
average modulus. Thus the fi and 5 that we find charac- 
terize the entire dynamic modulus curve. The smooth 
curve determined in this way is shown in Figure 10. We 
find P- 7.22 MPa and K - 23.28 GPa. In Table 1 

we list the values of fi and 5 found from this analysis. 
Note the magnitude of the cubic anharmonicity is ap- 
proximately 10 a, about 2 orders of magnitude greater 
than for normal materials. In general, consolidated ma- 
terials are very anharmonic compared to normal mate- 

Table 1. Predicted Dynamic Modulus fi and 6 From 
Normal Mode Preisach-Mayergoyz Space 

Sample •, MPa •-•, GPa fi 5 X 10 -6 

B1 7.22 23.28 -1805 -1.76 

B2 11.93 29.16 -1661 -0.66 

P is average pressure, and K is average modulus. Cal- 
culations are based on the average pressure over the range 
of the experimental data and (24)-(26). 

rials. The quartic anharmonicity 5 is of the order of 
magnitude of fi2. This is characteristic of consolidated 
materials; the most striking changes in modulus occur 
below pressures of order K. 

B2. We used the large stress-strain pressure loop 
shown in Figure 2 to invert for the B2 PM space den- 
sity using the method of normal modes. The resulting 
PM space density is shown in Figure 11 on a logarithmic 
gray scale. The PM space density shown on Figure 11 
was used to predict the eight small loops in the experi- 
ment on sample B2. The results are shown in Figure 12. 
The inset of this figure is the fourth small loop on pres- 
sure increase. 

From the PM space density we can calculate the dy- 
namic modulus using (10b). The result is shown in 
Figure 13, where we also show the two static moduli 
calculated from the experimental data. As we found 
for sample B1, the dynamic modulus is greater than 
the static modulus at all pressures. The oscillation of 
the dynamic modulus is evidence of the normal mode 
method we have employed, and we find that the error 
bars are of order the oscillation. 

As we did for sample B1, we can use a smooth 
curve through the dynamic modulus to determine the 
strength of the anharmonicities. We find P - 11.93 
MPaand K- 29.16 GPa. The values offi and 5 de- 
rived from this procedure are listed in Table 1. We note 
that fi is about the same for both Berea samples. The 
coefficient bK (see (24)) is quite close for the two sam- 
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Figure 12. Comparison of strain versus load from data 
and the him prediction for the B2 sample. The solid line 
is the experimental data; the solid circles are the pre- 
diction from P M space. The inset shows an expanded 
view of the fourth loop on pressure increase. 

ples (B1, bK - -1.8 x 106 , B2, b7-•- -1.24 x 106); 
however, the combination of bK and fi yielding 5 for 
sample B2 is smaller than for B1. 

C. For the C sample we looked at the five small 
loops that start at about 6 MPa (see the pressure pro- 
tocol inset in Figure 3). These loops are shown in Fig- 
ure 14, separated so that they can be seen easily. We 
used the largest of these loops to determine the PM 
space density for mechanical units in the range 3-6 
MPa. This pressure range is modest so we used only 
10 bins in PM space, AP • 0.3 MPa. The PM space 
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Figure 13. B2 moduli versus pressure from NM re- 
suits. The open circles are the static modulus for pres- 
sure increase from the experimental data. The open 
squares are the static modulus for pressure decrease. 
The solid squares are the dynamic modulus calculated 
from the diagonal component of the PM space density. 
The solid line is the quadratic fit to the dynamic mod- 
ulus curve. 
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Figure 14. C stress-strain data. In Figure 3 there are 
five pressure loops that begin at P • 6 MPa. These 
five loops are shown here with a vertical shift between 
loops. The line through each loop is a linear fit to all of 
the data points in the loop. The slopes of the linear fits 
are plotted in Figure 17 as solid squares. A PM space 
density was determined for sample C using the largest 
of these loops. 

density that we found using the NM method is shown 
in Figure 15. In this figure the sinusoidal character of' 
our choice of normal modes is evident in the spurious 
minimum close to the diagonal at P m 5 MPa. 
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Figure 15. C P M space density using NM. The density 
p(m, n) for the C sample, found using the method of 
normal modes, is shown as a function of (m, n) using a 
logarithmic gray scale. 
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The P M space density shown in Figure 15 was used 
to predict the behavior of the four smaller loops. These 
predictions are shown in Figure 16, shifted above the 
experimental data for clarity. On this figure we show a 
second set of predicted stress-strain loops, generated by 
a pressure protocol that begins at P = 3 MPa, advances 
to P = 4.5 MPa, and then makes a sequence of seven 
smaller and smaller downward loops from P = 4.5 MPa. 
From the stress-strain curves in Figure 16 we found a 
variety of moduli, plotted in Figure 17. 

1. The static modulus of the large experimental loop 
for pressure increase is shown as the open circles in Fig- 
ure 17. 

2. The average modulus of the five experimental 
loops in Figure 14 is shown as the solid squares in Fig- 
ure 17. For the average modulus of a loop we take 
the slope of a line, y =mx + b, fit to all of the data 
points on the loop. The average modulus is assigned to 
the pressure that is the average of the pressure range 
spanned by the loop. Thus the largest downward loop 
from P = 6 MPa has the lowest average pressure and is 
the most leftward of the five solid squares in Figure 17. 

3. The average modulus for the sequence of seven 
loops, predicted using the PM space density, that begin 
and end at P = 4.5 MPa is shown as the solid circles in 

Figure 17. 
4. The dynamic modulus calculated from the PM 

space density shown in Figure 15 is shown as the open 
squares on Figure 17. 

5. The dynamic modulus calculated from experi- 
mental measurement of the longitudinal and transverse 
sound velocity in sample C [Plona and Cook, 1995] is 
shown as the crosses in Figure 17. These measurements 
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Figure 16. Comparison of strain versus load from data 
and the NM prediction for the C sample. The bottom 
set of loops is the data in Figure 14; the middle set 
of loops (displaced for clarity) is the prediction for the 
behavior of the four smaller loops from the PM space 
for the largest loop. The top set of loops is a sequence 
of stress-strain loops predicted for a pressure protocol 
beginning at 4.5 MPa. The average slope of these loops 
is plotted in Figure 17 as solid circles. 
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Figure 17. C moduli versus pressure from NM re- 
sults. The open circles are the static modulus on pres- 
sure increase from the data on the largest loop. The 
open squares are the dynamic modulus calculated from 
the diagonal part of the PM space density. The solid 
squares are the sequence of slopes of the experimental 
loops shown in Figure 14 and plotted at the average 
pressure of the loop. The solid circles are the sequence 
of slopes of the predicted loops terminating at 4.5 MPa 
in Figure 16. The crosses are the dynamic modulus de- 
termined from direct measurement of the longitudinal 
and transverse velocities of sound. 

were made simultaneously with the stress-strain mea- 
surement. 

A number of observations can be made about the five 

moduli shown on Figure 17. (1) The dynamic modulus 
calculated from the PM space density is greater than 
the static moduli at every pressure. (2) A sequence of 
average moduli evolves from approximately the static 
modulus to approximately the dynamic modulus as the 
size of the loop decreases. (3) The dynamic modulus 
found from the PM space density is in good agreement 
with the measured value of the dynamic modulus. 

Conclusions 

In this paper we have introduced three methods for 
solution of the PM space inverse problem (simulated 
annealing, normal modes, and exponential decay) and 
tested them using three stress-strain data sets on sand- 
stones (B1, B2, and C). We applied all three methods 
to the B1 data set. From the data set we found the 

PM space density p and used it to predict the behavior 
of a sequence of quasi-static stress-strain curves. The 
resulting three sets of quasi-static stress-strain curves 
did not provide the means to make a definitive choice 
among methods. Considering flexibility (the ability to 
give an unanticipated result) and computation time, we 
feel that the method of normal modes is most valuable. 

We used this method to look further at the B1 data set 

and at the B2 and C data sets. We find the following. 
1. The PM space density is well described by a diag- 

onal plus background structure, as in (14). Almost 50% 
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of the mechanical elements are in the background; that 
is, almost 50% of the mechanical elements in a rock are 
hysteretic. 

2. The three data sets cover different pressure ranges: 
3 MPa, 12 MPa, and 24 MPa for the C, B1, and B2 
data sets, respectively. The PM space density is most 
uniform for sample C, the smallest pressure range, and 
least uniform for sample B2, the largest pressure range. 
As the variation in pressure and strain increases, the 
inverse problem becomes more difficult to constrain. 

3. PM space for samples B1 and B2 contains the 
highest density of hysteretic mechanical units at low 
pressure. This implies that the hysteretic behavior of 
rocks is due to mechanical units with maximum compli- 
ance at low pressure. At high pressure the rock tends to 
the elastic properties of the grain material with greatly 
reduced hysteresis. It is this qualitative property that 
gives both the sign and order of magnitude of/3 and 5. 

4. The signs and orders of magnitude of the non- 
linear coefficients • and 5 are in agreement with prior 
estimates [Winklet and Xingzhou, 1996]. However, re- 
liable estimates of dynamic elastic characteristics from 
static elastic properties requires further theoretical and 
experimental development. For example, better esti- 
mates of nonlinear coefficients require more accurate 
assignments of the diagonal density p(k,k). We may 
want to reduce the bin size in PM space to get a bet- 
ter dynamic estimate; however, the inversion problem 
is then less constrained. One way to add constraints is 
to use more data. A small stress-strain loop defines a 
small part of PM space; a larger stress-strain loop con- 
strains a PM space that is already partly defined by the 
small loop. 

5. The theoretical model we have employed con- 
nects the behavior of the individual mechanical ele- 

ments to the elastic properties of a statistical ensem- 
ble in the simplest possible manner, e.g., mechanical 
elements enforcing one of two lengths. When more 
complex mechanical elements are considerd, e.g., soft 
and stiff spring constants, the relationship between the 
strain and the density in PM space remains qualita- 
tively the same, although the analytic derivation of the 
PM space-strain relationship is more complex. 

6. Rocks have elastic properties similar to those of 
other consolidated materials (e.g., soils, cements, ce- 
ramics), and the ideas behind our treatment of rocks 
have the potential to be useful beyond geophysics. 

and impose an eightfold symmetry such that r/(i,j) = 
rl(-i,j ) : rl(i,-j) : rl(-i,-j) : rl(j, i): rl(j,-i) : 
r/(-j, i) = r/(-j,-i). The function r/ is periodic over 
2N -4, i.e., r•(i + 2N -4, j) = r•(i, j + 2N -4): r•(i, j). 
To describe r• in terms of normal modes, we use the set 
of functions 

c),(i, j) 

i (Trl•i) v/•(N-2) cos N-2 cos 

cos N-2 cos N-2 ' (A1) 

where c•,/•, and u are positive integers. 
Write r/(i, j) as a sum over N - 1 normal modes, 

N-2 

rl(i' J) - Z b,c),(i, j), (A2) 
c•--0 

where the amplitudes b, are to be determined. The 
experimental strain constraints given by (15) are incor- 
porated into an energy, 

2 

Ec- • Ck- akaba , 
k=0 •=0 

where 
N-2 k 

a• - y• y] •(i, j). (A4) 
i--k j --0 

The background density is smoothed by an energy 
smoothing 

ES 

N-2 

• • [r/(i + 1, j) - r/(i, j)]2 
i,j=-N+3 

+ [r/(i, j + 1) - r/(i, j)]2. (AS) 

By symmetry, r/(N - 1, j) - r/(-N + 3, j) and r/(i, N- 
1) - r•(i,-N + 3). Using the normalization properties 
of sums of cosines and sines, we have 

/•max /Amax 

Es- • Z S•,/Ab}/A, (A6) 
it--O /A:O 

Appendix: Normal Modes Procedure 

PM space is covered by bins (re, n), where m = 
0,..., N-l, and n = 0,..., N-1 and NAP is the max- 
imum pressure. The background portion of PM space 
pB(m, n) is the set of bins forming the triangle with 
corners (1, 0), (N-1, 0), and (N-1, N-2). There are 
N- 1 constraints on the background density; thus we 
can constrain at most N- 1 normal modes in (16). 

Symmetry can be used to advantage in the normal 
mode calculation, thus we define a function r/(i, j) such 
that for i,j = 0,..., N - 2, r/(i,j) = pB(i + 1,j). We 
define r/ over the range -(N- 2) <_ i,j _< N- 2, 

where 

•r/• ß 2 •rv ) (A7) S•,/A-4 sin2 2N-4 +s•n 2N-4 ' 

].tma x and //max are chosen such that the total number 
of states is N- 1, and u _</• for any particular state. 

The equations for the amplitudes are found by vary- 
ing the total energy Ec + AEs with respect to by, where 
7 is a particular choice of the coefficients. The param- 
eter A determines the relative importance of smoothing 
as compared to satisfying the constraints. The resulting 
equation is 
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N-2 

• (Ao•,- •SvS•,v)b• - By, (AS) 
o•--0 

where 
N-2 

A c•.), - • a k c• a k-), , 
k=0 

N-2 

(A9) 

Bv- • Ckal•v. (A10) 
k=0 

The procedure is to choose A, construct a, A, and B, 
and solve the linear system in (AS) for the set of b•. 
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