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NONLINEAR DYNAMICS OF ROCK: HYSTERETIC BEHAVIOR

L. A.Ostrovsky 1,2 and P. A. Johnson 3

We discuss the dynamics of media with hysteretic stress–strain properties. First, experimental
evidence of the hysteretic behavior of rock is presented. This evidence leads to a pattern of
unifying behavior whose origin is within the “bond system” of the material, which includes small
cracks, intergrain contacts and, the cement that holds the grains in place. Nonlinear response
is evident over a large frequency interval (dc to several MHz at least), and it is significant from
strains of plasticity down to the smallest measurable strains (order 10−8 − 10−9). Second, some
models related to such a behavior are outlined. Finally, oscillations and waves in hysteretic media
are discussed.

1. INTRODUCTION

The famous book “Oscillation theory” by Andronov, Witt, and Khaikin [1] provides a clear idea of
phase plane, limit cycle, and, finally, hysteresis as a multivalued response of a system to a forcing dependent
on the history of the process. Topologically speaking, these notions are associated with some closed figures,
loops, on the plane of the dynamic parameters (phase plane) or that of the material parameters (hysteretic
equation of state, EOS). Although the hysteretic behavior of ferromagnetics and ferroelectrics and their
mechanical analogues has been studied by physicists for decades, little has been addressed regarding the
theory of waves in such media except for some specific problems such as electromagnetic shock waves
(e.g., [2]). It has long been known that metals can have a hysteretic mechanical EOS which in the simplest
form is a dependence between the stress σ and strain ε.

Beginning in the 1940’s, Birch’s group at Harvard University began the study of the static nonlinear
properties of rock. These studies, conducted in large mechanical presses, were designed to interrogate the
EOS in rock samples at strong, low frequency forcing (near dc). Static tests were aimed at understanding
the nature of the earth’s interior in terms of pressure and temperature response and to predict mineral
assemblages and their phases in the earth’s lower crust and mantle. These studies have been invaluable
in understanding and modeling physical properties and inferring the composition of the earth’s interior.
In the early 1970’s, Stacy’s group at the University of Queensland wrote a series of papers on mechanical
hysteresis in rocks at low strains. Their work showed that nonlinear response persists in quasistatic tests at
strains as low as 10−6, and perhaps lower. In the early 1980’s, Bakulin and Protosenya and a group at the
Radiophysical Institute and the Institute of Applied Physics in Nizhny Novgorod began studies of nonlinear
response in earth materials.

As early as 1986, there was an international symposium on nonlinear seismology organized by the
Moscow Earth Physics Institute, held in Suzdal, USSR, and soon thereafter, a special issue of Physics of
the Earth and Planetary Interiors (V. 50, No.1, 1987) devoted to nonlinear seismology appeared.
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Fig. 1. Static stress–strain experiment: Typical experimental configuration for a uniaxial stress (a). Stress
history or “protocol” (b). Resulting stress–strain dependence for sandstone (c). The plot illustrates a nonlinear
stress–strain relation, hysteresis, and end-point (discrete) memory.

Studies of mechanical hysteresis in the EOS began to accelerate when our groups at the Institute
of Applied Physics and the Los Alamos National Laboratory began to actively investigate dynamical (vi-
brational, acoustical) properties in earth materials. Most attention in our recent research has been paid to
rock. The cumulative results of these studies confirmed that rock nonlinearity is very strong compared to
that of “normal” media like fluids and ideal crystals, and the nonlinearity reveals itself even at extremely
small, “acoustical” strain amplitudes. Relevant to that, in 1996–1999, the first four International Workshops
on Nonlinear Mesoscopic Elasticity were held at the Institute of Geophysics and Planetary Physics at Los
Alamos National Laboratory. Here, we outline some facts and ideas; an interested reader can find additional
material and detailed references in the illustrative paper [3] and a detailed review [4].

2. SOME EXPERIMENTAL INDICATORS OF HYSTERETIC NONLINEARITY IN ROCKS

Dynamic nonlinear response may manifest itself in a variety of manners. Let us outline some key
indicators of nonlinear hysteretic behavior of rock from the static and, mostly, dynamic data of laboratory
experiments.

2.1. Quasi-static experiments

The most direct observation of elastic nonlinearity in solids comes from quasi-static tests of stress
versus strain. Figure 1 shows experimental results illustrating such a dependence [5]. Primary characteristics
illustrated by such an experiment are: (1) extreme nonlinearity in the stress–strain dependence, (2) hystere-
sis (i.e., behavior depending on stress history) and, (3) “discrete memory” (also called “end point memory”).
Discrete memory can be described as follows. If a partial stress cycle is conducted during the quasistatic
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Fig. 2. Resonance acceleration response of polyvinylchloride (PVC) for several drive levels (a). Resonance
acceleration response of a Fontainebleau sandstone bar, for increasing drive (b). Time and frequency domain
signals from relatively low-amplitude (albeit already nonlinear) drive levels (bottom), and at large drive levels
(top) (c). The time signals are obtained at peak resonances in each case, Q is the quality factor of a sample,
and f =ω/2π.

cycle (e.g., small loops inside the big loop in Fig. 1c), the outer (low frequency) loop is maintained; discrete
memory is a memory of the previous maximum strain state. Similar results have been obtained by numerous
other researchers since the 1970s (e.g., [6, 7]).

These manifestations have important consequences for the elastic modulus of the material defined
as the derivative of the stress over the strain, ∂σ/∂ε. In short, static tests indicate that the value of the
modulus depends on the stress history and the current EOS amplitudes, and changes discontinuously at the
stress–strain cusps.

2.2. Dynamic experiments

There exist numerous methods by which to observe dynamic nonlinear effects. In the ultrasonic
range typically used in the acoustics of liquids and gases, the harmonics of a periodic travelling wave can
be monitored out to the distance of shock wave formation. However, for relatively low-frequency and low-
amplitude sound in solids, it is often difficult to obtain quantitative results from travelling wave experiments.
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The majority of quantitative measurements for rocks have been performed with resonant bars. Due to the
amplification that resonance provides, it is perhaps the most sensitive manner by which to observe nonlinear
behavior, even at extremely small exciting strains, even at ε = 10−9 in a simple one-dimensional configuration
ε = ∂u/∂x, where u is the displacement.

The corresponding dynamic experiments in solids are based on the relation between the detected
strain amplitude at the drive frequency and, typically, the following: (1) harmonic amplitudes, (2) wave
cross-modulation amplitudes, (3) resonance frequency shift, and (4) amplitude dependent losses. It is the
observation of these effects that tell us about the nature of the nonlinearity, for instance, whether or not
nonclassical behavior such as hysteresis is present in dynamic processes.

2.3. Nonlinear resonance frequency shift

The dependence of a mode resonance frequency

Fig. 3. Normalized frequency shift |f − f0|/f0, where
f0 is the linear resonance peak, versus strain ampli-
tude ε1 for various rocks under various experimental
conditions. A slope of approximately 1 indicates that
nonclassical nonlinearity is responsible for the peak
shift.

in a sample on the oscillation amplitude is a sensitive
measure that can be used for calculation of the average
modulus and wave speed in rock.

Nonlinear resonance in a classical system is due
to cubic nonlinearity (or its equivalent) and can be
attributed to the Düffing-type equation

..
u +ω2

0

(
u + pu3

)
+g

.
u= F0 cos(ωt), (1)

where p defines nonlinearity and g, dissipation. It is
well known that the resonance response of such an
oscillator to the force amplitude F0 is such that (for
small g) the amplitude maximum is shifted from the
linear resonance frequency ω0 at a value of ∆ω pro-
portional to F 2

0 . This result is rather universal for all
systems when the equation of state can be represented
as a polynomial.

Let us look now at the experimental results.
Figure 2a shows resonances in a “classical” medium
(polyvinylchloride) at different amplitudes; it is typi-
cal of the linear behavior. Figure 2b is representative
for nonlinear resonant behavior in a rock observed in Los Alamos [8]. The material is Fontainebleau sand-
stone under ambient temperature and pressure conditions. The solid and dotted lines in Fig. 2b indicate
that the resonance response is dependent on the direction of the frequency shift (up or down the frequency
axis). Clearly, the intensity of the distortion increases significantly with wave amplitude. Some relevant
wave forms and signal spectra are shown in Fig. 2c.

Figure 3 illustrates the dependence between the detected frequency shift and the strain for different
rocks. In all cases, this dependence is close to linear rather than to quadratic. This is unexpected behav-
ior for classical nonlinear elasticity, where the dependence is quadratic, and implies that the equation of
state contains singularities. More specifically, hysteresis is present. Note also that the nonlinearity is well
measurable at strains as small as 10−8 − 10−7, and that strain is actually equivalent to the acoustic Mach
number!

A complementary series of experiments was performed at the Institute of Applied Physics [9]. The
measurements were performed in samples of granite and for a cylinder filled with wet sand; the latter was
pre-consolidated by exposing it to intense sound over 4 hours to obtain stable results. Figure 4 shows the
resonance frequency shift for these materials as a function of strain amplitude ε0. As with the data shown
in Fig. 3, the shift is linearly proportional to ε0 for the granite and the sand. Of significance is that these
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Fig. 4. Resonance experiments in wet sand (grain diameters of about 0.3
mm) and granite: Experimental setup (a). Resonance peak shift versus
strain amplitude (b). The excitation frequency was 3.6 kHz (first-mode
resonance) and ∆f = f − f0.

are some of the very few existing measurements in

Fig. 5. Slow dynamical response in several rock types and
in concrete. The time-dependent shift δf of the recov-
ering resonant frequency, normalized to the asymptotic
value f0, per unit driving strain |ε|. Sample names are
indicated in the figure, and some data were divided by
the indicated factors for plotting convenience. Lavoux
is a limestone, Berea and Fontainebleau are sandstones,
and one sample of concrete was damaged.

unconsolidated material, the sand, and they show
the same dependence with strain as the rocks. How-
ever, a different dependence was found in marble.

It is notable that the rock samples demon-
strate slow dynamical (relaxation) response. Slow
dynamics in this context means that the average
material modulus is temporarily altered (lowered)
during wave excitation. After wave excitation, it
takes some time (of the order of 103 s) for the mod-
ulus of the material to recover its original state.
One manner in which to observe this behavior is
to monitor the resonance frequency before and af-
ter large excitation (e.g., [10, 11]). That is, after
measuring the linear resonant peak, the sample is
driven at a large amplitude for several minutes.
The low-amplitude resonance is then monitored
until the resonant peak has returned to its orig-
inal frequency. An example of slow dynamics is
illustrated in Fig. 5 for several different rock types
and for concrete. It is interesting that the reso-
nance frequency recovery is universally logarith-
mic in time. All this is further demonstration of
the nonclassical behavior of materials.

2.4. Harmonic generation

A large series of resonance experiments dealt with measurement of harmonic amplitudes via Fourier
analysis. For instance, a typical result for Berea sandstone taken from [8] is shown in Fig. 6a. The fact
that the second and third harmonic amplitude slopes are both proportional to the square of the driving
force amplitude also indicates that classical nonlinearity is not sufficient to explain such behavior. Indeed, a
classical stress–strain relation, like Eq. (2) below, always provides a cubic dependence of the third harmonic
amplitude on the main one.

The corresponding dependences obtained in other experiments [9] are shown in Figs. 6b and 6c for
granite and wet sand. These results further indicate that the EOS does not correspond to classic nonlinearity
and should be singular.
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Fig. 6. Second- and third-harmonic amplitudes at resonance peaks as functions of the measured strain
amplitude in Berea sandstone (a). Displacement amplitude of the second harmonic U2 versus the fundamental
displacement amplitude U1 in river sand and granite (b). Amplitude ε3 of the third harmonic of strain versus
fundamental strain amplitude ε1 in these materials (c). The fits correspond to a power law of 2, indicating
nonclassical nonlinearity.

2.5. Nonlinear dissipation

Amplitude-dependent loss is a well-known phenomenon in metals where it is attributed to hysteresis
due to dislocations. For rocks, for soils, and in earthquake studies (e.g., [12]) nonlinear dissipation is nearly
always observed and is an additional indicator of hysteresis in the EOS. Below, we give two examples.

Amplitude-dependent attenuation in earth materials was observed in experiments on the nonlinear
interaction between low-and high- frequency signals [13, 14]. During the low-frequency, high-amplitude
resonant excitation (“pump wave”), a longitudinal ultrasound pulse (frequency 200 kHz, pulse duration 70
ms) was generated to propagate for some distance along the bar, after which its amplitude was measured,
and the spatial damping rate was calculated. In the presence of the low-frequency mode, the ultrasound
damping rate increased in proportion to the low-frequency strain amplitude ε1 in granite and sand, and to
ε2
1 in marble (Fig. 7). Similar experiments for control samples (glass) did not reveal any significant nonlinear

effects.
Figures 7b and 7c show results from a resonance experiment in Berea sandstone [15] under vacuum

conditions at very small acceleration/strain levels. In the resonance data shown in Fig. 7b, a very small
frequency shift and peak broadening can be observed. Figure 7c shows the actual change in the sample
quality factor extracted from Fig. 7b. It is remarkable that nonlinear attenuation can occur at extremely
small strain levels when the nonlinear frequency shift is not clearly noticeable yet.

3. MODELS OF STRUCTURAL NONLINEARITY

An adequate physical model of rock must be associated with their complex structure. The mechanical
properties of rock appear to be a part of a broader class of materials, one we call the “Structural Nonlinear
Elasticity” class (also “Mesoscopic/Nanoscale Elasticity”). These terms are in contrast to materials that
display classical, “atomic” elasticity, such as most fluids and monocrystalline solids. The nonlinearity of
atomic elastic materials is due to the atomic/molecular lattice anharmonicity. The latter is relatively small
because the intermolecular forces are extremely strong. In contrast, the materials considered below contain
small soft features that we term the “bond system” (cracks, grain contacts, dislocations, etc.) occupying a
small total volume (of up to nanoscale sizes) within a hard matrix (grains, crystals) but subject to strong
deformation and is the origin of strong nonlinearity, whereas the hard phase is relatively insensitive to
deformation (e.g., [16,17]).
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Fig. 7. Dependence of the damping rate of a 200 kHz ultrasound pulse (X1(L) = ln[A0/A(L)], where A0 is
the input amplitude of the pulse and A(L) is output amplitude in the rod), on the amplitude ε1 (logarithmic
scale) of the low-frequency resonance “pumping” wave for three materials, obtained from the experimental
configuration shown in Fig.4. For sand and granite, the dependence is linear and for the marble, quadratic
(a). Resonance acceleration amplitude versus frequency at very small acceleration levels (b). From the data
in (b): normalized attenuation rate 1/Q versus strain (logarithmic scale) (c).

An effect of the soft/hard system is well known for liquids with bubbles where the maximum nonlin-
earity is observed for a gas volume fraction of less than 10−3 (e.g., [18]). A similar behavior is demonstrated
by waterlike porous media in which the shear modulus is small compared to the bulk modulus (i.e., the shear
wave velocity is much smaller than that of longitudinal waves). In such cases, the parameter of nonlinearity
β may reach values of 104 − 105 compared to 1 to 10 for “classical” gases, liquids, and solids. However, no
hysteresis exists in these systems.

From the above measurements one can calculate a set of fundamental nonlinear parameters of the
material and use them to infer the nature of the nonlinear response and to create models.

The classical nonlinear theory for atomic elasticity is thoroughly described in literature (see [19]).
It begins with the expansion of the elastic strain energy, E, in powers of the components of strain tensor,
εij . The expansion coefficients designate the components of the second-order elastic tensor and the third-
order elastic tensor, respectively. These tensors are characterized, respectively, by 21 and 56 independent
components for an arbitrary anisotropic medium (in the lowest-order, triclinic material symmetry) and only
by 2 and, respectively, 3 components in the highest-order symmetry (isotropic material). The result is an
equation of state relating the stress tensor σik to the strain tensor. To gain an insight, one can consider
the one-dimensional case. For a longitudinal wave (P -wave) propagating in an isotropic medium, a one-
dimensional wave can exist with only nonzero components σxx = σ and ux = u or εxx = ε = ∂u/∂x.
Then,

σ = M
(
ε + βε2 + δε3 + ...

)
, (2)

where M is the elastic modulus, and β and δ are nonlinear coefficients that can be expressed in terms of
combinations of the elastic moduli. A typical order of linear moduli for atomic elastic solids is 1011−1012 Pa.
From here, it easily follows that the amplitude of the second harmonic of a signal, A2, is proportional to the
square of the amplitude of the applied force, A0, and the third harmonic is proportional to A2

0.

Nonlinear response in hysteretic materials should contain an additional, singular term in EOS that
is sensitive to the history of the process. The latter can be characterized by the sign of

.
ε= ∂ε/∂t:

σ = M
(
ε + βε2 + δε3 + ...

)
+ Â

[
ε, sign(

.
ε)

]
, (3)

where Â is a functional describing “nonclassical” effects. A specific form of Â should follow from the physics
of the material. In an early work by Asano [20], two basic types of nonclassical (hysteretic in stress–strain)
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Fig. 8. Simplified forms of two hysteretic models of the EOS: irreversible (type 1) hysteresis (a) and reversible
(type 2) hysteresis (b).

behavior were considered. One of them (type 1) surrounds the zero point on the (σ, ε) plane for periodic
motion (Fig. 8a). The second (type 2) includes the zero point and has a “butterfly” shape (Fig. 8b); it is
related to the Granato–Lücke model discussed below. Note that Asano associates them with two simple
mechanical models, “slider” for type 1 and “ratchet” for type 2 which could help to understand their physical
nature. In many cases, these forms were introduced as a best fit for experimental values and dependences.
For example. using a specific phenomenological EOS enabled the authors of [14] to consistently describe the
results of their experiments.

A semi-phenomenological model called the Preisach–Mayergoyz space (P–M space) model, which
successfully describes the hysteretic nonlinear behavior of rock elasticity with discrete memory, was developed
in a series of papers by our colleagues (see [3, 21] and references therein). The model assumes that the
elastic properties of a macroscopic sample of material result from the integral response of a large number
of individual, elastic elements (of order 1012, a rough estimate of the number of grain-to-grain contacts,
microcracks, etc., in one cubic centimeter of rock). Each elastic element may or may not demonstrate
hysteretic behavior. The individual elements are combined for analysis in what is known as P-M space (also
referred to as Preisach space). To obtain an equation of state, it is assumed that most of the elements are
nonhysteretic (with weak nonlinearity). As a result, the stress–strain relation of type 2 hysteresis follows.
The P–M space model gives some idea of the composition of a hysteretic media (note that the dislocations
considered below can serve as its elements). However, it still remains a phenomenological description that
does not contain the physical mechanisms of nonlinear response. In the following discussion, several relatively
simple physical models will be tested here to see if they can provide some insight into the mechanism of
nonlinear response.

3.1. Hertzian contacts

A starting point model of nonlinearity in rock can be based on representing the rock as a system of
dry, contacting grains as shown in Fig. 9. These contacts are much softer than the matrix material, the
grains themselves, and therefore play the primary role in the nonlinear elastic response of the medium. In
this model, the distance change ∆ between the grain centers is related to the compressing force, F , by the
Hertzian contact law (e.g., [19])

∆ =
[
3(1− ν2)F

4ER1/2

]2/3

, (4)

where E is the Young’s modulus of the material, ν is the Poisson ratio, and R is the grain radius.
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For a dry medium composed of spheres, this readily yields the following one-dimensional EOS relation
[16] in which the effective stress, σeff , is proportional to ε3/2. As a result, the contact contribution to the
sound speed, c(ε) = (ρ−1dσeff/dε)1/2 ∝ √

ε, where ρ is density, tends to zero at small positive strains.
(Negative strain means that grains separate, and there are no contact forces present.) However, dc/dε,
which is a measure of nonlinearity, tends toward infinity! In real experiments, the aggregate is subject to
a static pressure creating a constant pre-strain, ε0, and for small one-dimensional perturbations, we can
expand σ into the series (2), where the modulus M is proportional to ε

1/2
0 , and the quadratic and cubic

nonlinearity coefficients are
β = 1/(2ε0), δ = 1/(6ε2

0). (5)

In rock, the role of pre-strain can be played by a hard, consolidated fraction of contacts and/or by the
pressure from upper layers of earth.

Some interesting properties of granular materials follow

Fig. 9. An aggregate of contacting grains.

from these simple results. For instance, the nonlinearity pa-
rameters do not depend on grain size or on their composition,
but on pre-strain ε0, i.e., on static pressure. These results were
confirmed in experiments with lead shot and tuff excited at fre-
quencies of a few kilohertz by a vibrating table [22]. The values
of ε0 were controlled by loading masses. From measurements of
second and third harmonics, formulas (5) both gave good agree-
ment with the experiment, whereas the parameter β exceeded
103 and δ exceeded values of 5·106.

Hence, this model predicts a very strong nonlinearity as
compared with the solid matrix, and it admits many effective extensions. One of them deals with small-
scale multicontact interfaces between larger grains, yielding a significant local amplification of nonlinearity
from local stress concentrations. Estimates [17] show that for larger grains (of radius R) in contact with
smaller hemispheres of radius r, the nonlinear portion of the EOS and, correspondingly, the nonlinearity
parameters (5) acquire an additional term of s(R/r)3/2, where s is the relative contact area occupied by
small-sphere contacts (the remaining area is assumed to be cemented). This approach can be extended to
more complicated fractal structures.

An interesting physical problem is associated with the effect of intergrain fluid. A 100% saturation
decreases nonlinearity due to decreasing linear compressibility. However, a small amount of liquid can
increase nonlinearity thanks to the effect of capillary forces or, for even thinner contacts of grains, to the
Van der Waals force. The increase in nonlinearity at small and moderate fluid saturation has been confirmed
experimentally [23]. This area is, however, beyond the scope of this paper.

The above effects are sufficient to provide extremely strong nonlinearity but still fail to include
hysteresis. For the latter, transverse deformation can be important. In a series of papers by D. Johnson
and colleagues (see [24] and references therein), a detailed analysis of nonlinear properies of granular media
under the influence of static pressure was investigated. These authors took into account both the Hertz
theory and the Mindlin relation (and its variations) stating that upon normal compression, a tangential
displacement, τ , of contacting may arise that, in general, creates an additional transverse force:

δT =
4µa(∆)τ

1− ν
. (6)

Here again, ∆ is the relative displacement of spheres, µ is the shear modulus of the material, and a is a
characteristic length depending on the nature of the surface contacts. For a “pure” Hertzian contact with
reversible slip, a = 0, but for a rough, nonslip contact, it is equal to

√
R∆ or, in the case of pre-compression

with an initial contact radius b, a= [(R2∆2 + b4/4)1/2 + b2/2]1/2. This results in new features such as the
dependence of forces and energy on the path of deformation. Indeed, in general, transposing of normal
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and transverse displacements changes the work of external force. This is actually a hysteretic phenomenon
that causes, for example, attenuation of an elliptically polarized acoustic wave. However, the role of this
mechanism in rock hysteresis is still unclear, and below, we shall incorporate the description suggested
several decades earlier for hysteretic behavior of metals.

3.2. Granato–Lücke model

In many hysteretic materials, the bond system is

Fig. 10. Granato-Lücke model of dislocations
(a). Resulting stress–strain curve for a single
dislocation (solid line) and a distribution of dis-
locations (dashed line) (b).

crystalline. Therefore, dislocations within the crystal lat-
tice of the bond system could conceivably produce a non-
linear response. A physical model based on dislocations
in metals was suggested by Granato and Lücke (G-L) as
early as the fifties [25]. They used the analogy between
a segment of a dislocation line pinned to impurity atoms
and the motion of a string in order to describe elastic de-
formations (Fig. 10a). As the stress increases (normally
shear stress), dislocations deform like pieces of string un-
til, at some critical stress, they are disconnected from all
impurity atoms between the nodes of a crystalline struc-
ture. As a result, the material becomes softer, which re-
sults in a strong nonlinearity of the stress–strain depen-
dence (Fig. 10b, solid line). This process is irreversible:
upon reducing stress, the system returns to equilibrium
along a “soft” line. However, the resulting equilibrium
state may be the same before and after inducing the dis-
locations to react, so that we have a type 1 hysteresis. The model also incorporates slow dynamics because
the equilibrium state takes some time to restore. In reality, the distances between the sticking points are sta-
tistically distributed, which smooths the hysteretic loop (Fig. 10b, dashed line). Hybrids of the G-L model
include other aspects including frequency dependence. In spite of some disadvantages, this model was truly
a pioneering micromodel for the hysteretic dynamic behavior of structurally inhomogeneous materials.

4. NONLINEAR OSCILLATIONS AND WAVES IN ROCKS

In order to explain the experimental data, it is necessary, along with construction of material models,
to understand the peculiarities of waves in these materials. From the above considerations and experimental
data, it can be expected that these processes are more complex than those in nonlinear acoustics describing
most fluids and intact solids.

4.1. Classical theory

The equation of motion in Lagrangian coordinates is

ρüi =
∂σij

∂xj
, (7)

where ui are the components of the displacement vector, u; and ρ, σij, and ü designate the density, the
stress tensor, and the particle acceleration, respectively.

To gain an insight, one can consider the one-dimensional case. For a longitudinal wave (P -wave)
propagating in an isotropic medium, a one-dimensional wave can exist with only nonzero components σxx = σ
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and ux = u or εxx = ε = ∂u/∂x. The resulting equation of motion can be written as

ρ0
∂2ε

∂t2
=

∂2σ(ε)
∂x2

. (8)

From the energy expansion, the EOS can be written as (2). Correspondingly, the local sound velocity
is

c =
√

ρ−1dσ/dε ≈ c0(1 + 2βε + δε2 + ...), (9)

with c0 =
√

M/ρ.
Note that even if the nonlinearity is anomalously large in rocks in comparison with that of atomic

elastic media, the nonlinear terms in the EOS are generally much smaller than the linear term. This is
because ε is of the order of 10−9 − 10−5 in dynamic experiments. Therefore, one can use the relation (8)
and its generalizations for media with strong nonlinearity.

This nonlinearity can be caused by two mechanisms. The first is of a “geometrical” or “kinematic”
type, associated with the difference between the Lagrangian and Eulerian descriptions of motion (such as
(u∇)u in the Eulerian equation of motion). The other type is “physical” elastic nonlinearity. Physical
nonlinearity is described by third-order (and higher) terms in the expansion of the elastic energy in ε, and
accounts for the fact that stress is not a linear function of strain. Geometrical nonlinearity is typically
comparable in order to physical nonlinearity in atomic elastic materials, such as fluids and intact solids. In
rock and other highly nonlinear media, physical nonlinear response is typically orders of magnitude larger
than geometric nonlinear response, and therefore, the latter (and hence the difference between Eulerian and
Lagrangian descriptions) can be ignored, which somewhat simplifies the mathematics.

4.2. Traveling waves and hysteresis

For hysteretic media, we begin by considering traveling (progressive) waves in an unbounded material.
For a one-dimensional traveling wave, the strain ε ≈ −v/c, where v = ut is the particle velocity, and c is
sound velocity. In this case, ε plays the role of the acoustic Mach number. When the Taylor expansion (9)
for c is valid, a well-known solution in the form of a simple (Riemann) wave follows from Eq. (8):

ε = F [x− c(ε)t] , (10)

where F is an arbitrary function defined by the initial condition, and c(ε) is the local wave speed. Propa-
gation of such a wave in acoustics is known to result in the appearance of shocks and then the formation of
a sawtooth wave (e.g., [18]), which dissipates asymptotically as t−1 at a sinusoidal initial condition.

Looking back at the experiments, we see nonclassical, hysteretic behavior of rock and turn to wave
solutions that can describe this behavior. The evolution of a nonlinear wave in hysteretic media described
by Eq. (3) is considerably different from that of a wave in classical nonlinear media. Several problems of this
kind have already been addressed in publications (e.g., [26–29]). Here we give only a few simple illustrations.
Available phenomenological models of hysteretic stress–strain dependence can include rather many parame-
ters, and the choice should be based on experimental results. We mention here both basic hysteretic models
outlined above, of types 1 and 2 (Figs. 8a and 8b), for which the wave distortion processes are significantly
different from each other and from the classical case. Here, we restrict ourselves by symmetric hysteretic
loops. Thus, for type 1

σ =
{

(E − αεm)ε + (γ/2)(ε2
m − ε2), ε̇ > 0;

(E − αεm)ε− (γ/2)(ε2
m − ε2), ε̇ < 0,

(11)

where E is the linear elasticity modulus, εm is maximal strain corresponding to the singular points of EOS,
and γ is the nonlinearity parameter; for weak nonlinearity, γεm � 1. This relationship corresponds to an
irreversible hysteresis in the sense that ε 6= 0 for σ = 0 and vice versa. If the process starts from zero, it first
goes along some path up to the singular point ε = εm, and then continues periodically along the loop (11).
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Fig. 11. Qualitative evolution of the wave profile as a
function of the “traveling phase” Θ = Ω(t − x/c0) in a
nonhysteretic medium with a quadratic nonlinearity (a),
in a type 1 hysteretic model (b), and in a type 2 hysteretic
model (c). Curves 1, 2, and 3 correspond to three suc-
cessive points along the propagation path. For (a) and
(b) the input wave is sinusoidal with frequency Ω, for (c)
it is a unipolar pulse in the form of a half-period of a
sinusoid with the frequency Ω.

The type 2 model is described by the equation

σ(ε, ε̇) = E


ε− γε2/2,
ε + γε2/2− γεmε,

if ε > 0 and ε̇ > 0;
if ε > 0 and ε̇ < 0;

ε + γε2/2,
ε− γε2/2 + γεmε,

if ε < 0 and ε̇ < 0;
if ε < 0 and ε̇ > 0.

(12)

In this case, the loops beginning from zero are reversible.
Let us now describe traveling waves within the framework of these two EOS. As long as nonlinearity

is small, each piece of a wave corresponding to a given branch of hysteretic EOS propagates as a simple
wave (10) without reflections. They should be matched at ε = εm. Some analytical expressions for the
wave (10) can be found, for example, in [29]. They are rather cumbersome due to the dependence of the
wave amplitude εm on time. Qualitative pictures of nonlinear wave evolution for different cases are shown
in Fig. 11. Figure 11a demonstrates a classical case: the evolution of an initially sinusoidal wave in a
nonhysteretic medium with quadratic nonlinearity. In this case, a sawtooth wave is eventually formed. Due
to hysteresis, an additional kind of singularity arises. In general, due to singularity at the wave maximum,
the portions on either side of the wave peak move with different velocities, thus “consuming” each other
and resulting in the formation of a cusp. Figure 11b shows such a process for the type 1 EOS and Fig. 11c,
for the type 2 EOS. In the latter case, a unipolar pulse is shown; otherwise, additional singularities in the
zero point may occur.

The corresponding asymptotic behavior of wave amplitude at large distances is also different. For
example, for the type 1 hysteresis (11), the wave amplitude εm changes as 1/t, as in a classical periodic
sawtooth wave. Needless to say, the wave profiles are radically different from their classical “prototypes.”
Correspondingly, whereas all harmonics are represented in the classical sawtooth wave, only odd harmonics
exist in the symmetric hysteretic case.

In short, the presence of hysteresis qualitatively changes the wave profile evolution in comparison
with the classical case.
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4.3. Resonance oscillations

The theory for nonlinear standing waves is more complicated due to nonlinear interactions of op-
positely propagating waves. In the general case, one should solve a nonlinear wave equation (8) with an
external forcing and boundary conditions at the end of the bar. In terms of displacement u, this equation is

ρ

(
ü +

ω

Q

.
u

)
=

∂σ

∂x
+

1
2
F0(x)

[
ei(ω+∆)t + c.c.

]
, (13)

where F0(x) is the external force amplitude, Q is the linear quality factor, ∆ is the frequency shift (detuning)
from a linear resonance mode, and c.c. denotes complex conjugate.

For a small nonlinearity, the structure of resonance modes is close to that of the linear system,
although their amplitudes are strongly affected by nonlinear interaction. Thus, it is adequate to use an
expansion of the solution for u into the modal series:

u =
∑

n

An(t)Φn(x), (14)

where Φ is the eigenfunction of the linear wave to be found with the use of corresponding boundary conditions
at the bar ends (for a bar of length L with free ends, Φn = cos(kx), where k = nπ/L and n is an integer
mode number). As a result, we obtain a system of ordinary differential equations for An that can usually
be reduced to a system of a few interacting resonant modes (e.g., [30]).

Substituting a solution in the form (14) for the nth mode, e.g., u = U cos(knx) exp[−i(ωn + ∆)t/2],
into Eq. (13), multiplying by cos(knx) and integrating over the length L of the bar, we obtain the following
equation for the amplitude U in equilibrium:

−ρ
(
ωnU∆ + iω2

n/(2Q)
)

= kn

〈
σN

1

〉
+ 〈F0n〉 . (15)

The stress is σ = E(ε) + σN(ε) with N denoting the small nonlinear portion, σN
1 is the amplitude of

the first temporal harmonic of the nonlinear part of the stress, and E is the linear modulus, so that
c0 = ωn/kn = (E/ρ)1/2. Here Q is the linear quality factor, and

〈
σN

1

〉
= L−1

∫ L
0 σN

1 (x) cos(knx)dx denotes
spatial averaging. Hence, we have an equation for the amplitude-frequency resonance dependence. In terms
of strain ε = ∂u/∂x, the result is

εm =
ε0

L
√

((∆ + ∆N)/c0)2 + (kn/2QN)2
, (16)

where QN < Q is the quality factor taking into account both linear and nonlinear losses and ∆N is the
nonlinear frequency shift. Nonlinear losses and frequency shift depend on the imaginary and real parts of〈
σN

1

〉
. Here, it is supposed that the excitation occurs in a fixed point x = 0, i.e., u(0, t) = u0 sin(ωt), and

ε0 = k1u0.

The result clearly depends on the EOS of the medium. In a classical “cubic” medium, where σN ∝ ε3,
this relation defines a well-known nonlinear resonance curve corresponding to the known Düffing oscillator,
with the nonlinear frequency shift proportional to ε0

2. In hysteretic media considered above, the wave profile
is distorted according to the above consideration of traveling waves. Note that, unlike in classical media, the
Taylor expansion of

〈
σN

1

〉
contains not only odd but also even powers of ε. As a result the third harmonic

in hysteretic media can be proportional to ε2 as observed.
For strong wave distortion, a relatively simple way to treat the problem is to consider a ring resonator

[17] (similar to that used in experiments described in [30]) where a resonance mode can be a wave traveling
around the ring and undergoing nonlinear distortion until it is balanced with a harmonic source applied at
some point. Hysteretic media described by the two aforementioned types of phenomenological stress–strain
loops yield different results.
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Let us denote by ν(ε1) the relative change of the amplitude of the fundamental harmonic ε1 of the
wave upon propagation at the distance of the bar length, and suppose that g � 1. The wave excited at
x = 0 has the form u(0, t) = u0 sin(ωt), so that the first harmonic arriving at x = 0 after passing the ring
length L will have the delay of L/c and decay by a factor of g, which in the steady-state regime is to be
compensated for by the source. Thus, the balance equation for ε1 takes the form

ε1 − ε1

[
1− ν(ε1)

]
e−ikL = ku0. (17)

The solution of this equation can be represented as Eq. (16) plus the expression for
〈
σN

1 (εm)
〉

de-
pending on the EOS model. For illustration, we suppose that the excitation amplitude is large enough and,
consequently, a steady-state travelling nonlinear wave excited in the ring has an asymptotic form with cusps
corresponding to Figs. 11a and 11b. Briefly, the results are the following.

In both cases, the nonlinear Q-factor for the nth mode is given by

Q−1
N =

ωn

2πc0
gε1, (18)

where g = 2π2γ for the type 1 model (11) and g = 4π2γ for the type 2 model (12).
The nonlinear resonance frequency shift is

δωn = −πωnε1β

2c0
, (19)

with β = γ for type 1 hysteresis and β = α for type 2 one. Hence, both the losses and the frequency shift are
proportional to the amplitude of excited oscillations, and the resonance curves look as in Fig. 2b. However,
the relation between ε1 and the input strain ε0 in resonance depends itself on the nonlinear losses and, as a
result, on the EOS.

Similarly, a higher mth harmonic of oscillations at a given mode can be considered by using the per-
turbation method (small harmonic amplitudes) and the corresponding stress harmonic amplitude,

〈
σN

m

〉
. For

hysteretic models with singularities, we obtain different dependences which are often observed in experiments
with rocks.

5. CONCLUSIONS

Oscillations and waves in hysteretic media may appear an arcane subject. At the same time, as
illustrated above, in the dynamics of rocks, some ceramics, some metals, and damaged materials, hysteresis
is a rule rather than an exception. This is seen from the experimental results outlined above: the micro-
to-nanoscale “bond system” (microcracks, dislocations, etc.) responsible for strong hysteretic nonlinearity.
Such “violations” are so ubiquitous that a regular crystalline structure can be considered almost as an ex-
ception for macroscopic solids found in nature. This is an extremely rich area of material physics which can
be considered as a bridge between the macroscopic mechanical properties, mesoscopic granular structure,
and nanoscale features that appear responsible for the hysteretic behavior. A joint mechanical, thermody-
namical, and possibly even quantum-physics approach may be necessary for understanding the physics of
nonlinearity in rocks. In addition, the practical significance of nonlinear methods of non-destructive eval-
uation of materials (e.g., [31]) has been already demonstrated. At the same time, it opens an interesting
chapter in nonlinear wave theory which deserves to be more actively addressed.
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